• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 28
  • 28
  • 11
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Evaluation à priori des performances environnementales d'un noyau magnétique de transformateur triphasé sur la base de tests simplifiés. / Effect of GOES characteristicson transformer noise and losses : Methodology implementation

Penin, Rémi 08 April 2014 (has links)
Le transformateur est aujourd’hui l’un des convertisseurs statiques les plus utilisé notamment dans la distribution électrique. Les tôles magnétiques servant à la construction de leurs circuits magnétiques sont devenues de plus en plus performantes permettant une réduction des pertes produites. Néanmoins, les tests normalisés permettant de caractériser les tôles magnétiques ne reflètent pas totalement le comportement énergétique du transformateur. De plus, une autre problématique a gagné en importance durant ces dernières années : le bruit acoustique émis. Malheureusement, il n’y pas encore de lien entre la qualité de la tôle à grains orientés choisie pour construire le circuit magnétique et le bruit acoustiques que va produire celui-ci. L’objectif de cette thèse est de répondre à cette double problématique à partir de tests simplifiés. En effet, de nombreux dispositifs expérimentaux et méthodologies ont été développés tels que la méthode des trois cadres, permettant d’étudier la répartition des pertes fer dans le transformateur, les circuits magnétiques décalés, permettant d’étudier les phénomènes à l’origine des bruit acoustique, et des modèles de transformateurs monophasés et triphasés. De plus, des simulations numériques ont été effectuées afin d’approfondir nos analyses des résultats expérimentaux. L’étude des dispositifs ont permis de mettre en évidence trois paramètres relatifs à la qualité des tôles magnétiques, entrainant des différences de répartition d’induction set donc des différences de répartition de pertes fer, d’une part, et de bruit acoustique dans les transformateurs, d’autre part. / The transformer is now a static converter most notably used in electrical distribution. The electrical steel sheet used in the construction of their magnetic circuits have become more efficient to reduce losses occurred. However, standardized tests to characterize the electromagnetic steel do not fully reflect the energy behavior of the transformer. In addition, another issue has gained importance in recent years: the acoustic noise. Unfortunately, there is no link between the quality of grain oriented steel selected to construct the magnetic circuit and acoustic noise that will produce it. The objective of this thesis is to answer this dual problem from simplified test. Indeed, many experimental devices and methodologies have been developed such as the method of three frames, to study the distribution of core losses in the transformer, the magnetic circuits shifted, to study phenomena at the origin of acoustic noise, and models of single and three phase transformers. In addition, numerical simulations were performed to deepen our analysis of the experimental results. The study of the devices have allowed to identify three parameters relating to the quality of grain oriented electrical steel, resulting from differences in the distribution of the flux density and therefore, first, the differences in distribution of core loss and, hand, acoustic noise in transformers.
22

A Control Algorithm To Minimize Torque Ripple And Acoustic Noise Of Switched Reluctance Motors

Bizkevelci, Erdal 01 June 2008 (has links) (PDF)
Despite its simple construction, robustness and low manufacturing cost, the application areas of SR motors are remained limited due to the high level of acoustic noise and torque ripple. In this thesis work, two different type of controllers are designed and implemented in order to minimize the acoustic noise and torque ripple which are considered as the major problems of SR motors. In this scope, first the possible acoustic noise sources are investigated. A sliding mode controller is designed and implemented to reduce the shaft torque ripple which is considered as a major source of acoustic noise. The performance of the controller is experimentally tested and it is observed that especially in low speed region reduction of torque ripple is significant. The torque ripple minimization performance of the controller is also tested at different speeds and the acoustic noise levels are recorded simultaneously. Comparing the noise mitigation with the noise reduction the correlation between the acoustic noise and shaft torque ripple is investigated. The results obtained from this investigation indicated that the torque ripple is not a major source of acoustic noise in SR motors. After this finding, radial force which is the other possible acoustic noise source of SRM is taken into consideration. The effects of control parameters on radial force and the motor efficiency are investigated via simulations. With the intuition obtained from this analysis, a switching angle neuro-controller is designed to minimize the peak level of radial forces. The performance of the mentioned controller is verified through noise records under steady state conditions. Regarding to the radial force simulations and the acoustic noise measurements, it is deduced that the radial force is the major source of acoustic noise. On the other hand, another controller is designed and implemented which increases the average torque per ampere value in order to increase the efficiency of the motor. It is seen that this controller has a good effect on increasing the efficiency but does not guarantee to operate at maximum efficiency.
23

Position Estimation in Switched Reluctance Motor Drives Using the First Switching Harmonics of Phase Voltage and Current

Ha, Keunsoo 04 August 2008 (has links)
Position estimation using only active phase voltage and current is presented to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fourier analysis, flux-linkage and position are estimated without external hardware circuitry such as a modulator and demodulator, resulting in increasing cost, as well as large position estimation error produced when the motional back emf is ignored near zero speed. Hence the proposed position estimation scheme covers the entire speed range including the standstill under various loads and it has high resolution information depending on switching frequency. Fourier series and Fast Fourier transform are employed to decompose the phase voltage and current into its first switching harmonic. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. The estimated values very closely track the actual values in dynamic simulations and experiments. It is shown that the proposed position estimation scheme using Fourier analysis is sufficiently accurate and works satisfactorily at various operating points. This research also proposes an accurate self-inductance measurement method. In general, when applying circulating currents within the body of a ferromagnetic material under conditions of a time varying magnetic flux, the effects of eddy current losses and resistance changes due to heating decrease the magnetic field strength and thereby the reduced magnetic field decreases the magnetic flux-linkage of SRM. These losses make a challenge to the measurement of magnetic characteristics of SRM. These motives lead to propose a measurement methodology based on 60 Hz sinusoidal excitation using a variable AC power supply, which provides an alternative to time domain integration approaches for self-inductance or flux-linkage measurement as well as eliminates error arising from thermal and eddy currents effects. The validation of the proposed method is verified with the correlation between the measurement and FEA results of flux-linkage. Furthermore, this research proposes the solutions for low cost and high efficiency drive systems, consisting of a split AC converter and a two-phase SRM. Its performance is analyzed and verified with experiments at the rated speed under various loads. It is believed that this drive system combined with the proposed position estimation scheme using Fourier analysis is a strong contender to be a low cost motor drive system with single switch per phase having comparable efficiency and acoustic noise level as an asymmetric drive system. / Ph. D.
24

Design and Control of A Ropeless Elevator with Linear Switched Reluctance Motor Drive Actuation Systems

Lim, Hong Sun 03 May 2007 (has links)
Linear switched reluctance motor (LSRM) drives are investigated and proved as an alternative actuator for vertical linear transportation applications such as a linear elevator. A one-tenth scaled prototype elevator focused on a home elevator with LSRMs is designed and extensive experimental correlation is presented for the first time. The proposed LSRM has twin stators and a set of translator poles without back-iron. The translators are placed between the two stators. The design procedures and features of the LSRM and the prototype elevator are described. The designed LSRM is validated through a finite element analysis (FEA) and experimental measurements. Furthermore, a control strategy for the prototype elevator is introduced consisting of four control loops, viz., current, force, velocity, and position feedback control loops. For force control, a novel force distribution function (FDF) is proposed and compared with conventional FDFs. A trapezoidal velocity profile is introduced to control vertical travel position smoothly during the elevator's ascent, descent, and halt operations. Conventional proportional plus integral (PI) controller is used for the current and velocity control loops and their designs are described. The proposed control strategy is dynamically simulated and experimentally correlated. Analytical and experimental results of this research prove that LSRMs are one of the strong candidates for ropeless linear elevator applications. However, the proposed FDF is assuming that the feedback current signals are ideal currents indicating actual phase currents without any measurement disturbances mainly arising from sensor noise, DC-link voltage ripple, measurement offset, and variations in the plant model. Meanwhile, real control systems in industry have measurement disturbance problems. Phase current corrupted by measurement disturbances increases torque or force ripple, acoustic noise and EMI. Therefore, this dissertation also presents a novel current control method to suppress measurement disturbances without extra hardware. The controller is based on an extended state observer (ESO) and a nonlinear P controller (NLP). The proposed method does not require an accurate mathematical model of system and can be implemented on a low-cost DSP controller. The proposed ESO is exploited to estimate the measurement disturbances on measured phase currents, and the proposed NLP compensates for the measurement disturbances estimated by the ESO. The performance of the proposed current control is validated through extensive dynamic simulations and experiments. Moreover, this rejection of measurement disturbances results in a reduction of force ripple and acoustic noise. Due to superior and robust current control performance, it is believed that the proposed method can be successfully applied into other motor drive systems to suppress measurement disturbances with the same promising results without extra hardware. / Ph. D.
25

Finding A Subset Of Non-defective Items From A Large Population : Fundamental Limits And Efficient Algorithms

Sharma, Abhay 05 1900 (has links) (PDF)
Consider a large population containing a small number of defective items. A commonly encountered goal is to identify the defective items, for example, to isolate them. In the classical non-adaptive group testing (NAGT) approach, one groups the items into subsets, or pools, and runs tests for the presence of a defective itemon each pool. Using the outcomes the tests, a fundamental goal of group testing is to reliably identify the complete set of defective items with as few tests as possible. In contrast, this thesis studies a non-defective subset identification problem, where the primary goal is to identify a “subset” of “non-defective” items given the test outcomes. The main contributions of this thesis are: We derive upper and lower bounds on the number of nonadaptive group tests required to identify a given number of non-defective items with arbitrarily small probability of incorrect identification as the population size goes to infinity. We show that an impressive reduction in the number of tests is achievable compared to the approach of first identifying all the defective items and then picking the required number of non-defective items from the complement set. For example, in the asymptotic regime with the population size N → ∞, to identify L nondefective items out of a population containing K defective items, when the tests are reliable, our results show that O _ K logK L N _ measurements are sufficient when L ≪ N − K and K is fixed. In contrast, the necessary number of tests using the conventional approach grows with N as O _ K logK log N K_ measurements. Our results are derived using a general sparse signal model, by virtue of which, they are also applicable to other important sparse signal based applications such as compressive sensing. We present a bouquet of computationally efficient and analytically tractable nondefective subset recovery algorithms. By analyzing the probability of error of the algorithms, we obtain bounds on the number of tests required for non-defective subset recovery with arbitrarily small probability of error. By comparing with the information theoretic lower bounds, we show that the upper bounds bounds on the number of tests are order-wise tight up to a log(K) factor, where K is the number of defective items. Our analysis accounts for the impact of both the additive noise (false positives) and dilution noise (false negatives). We also provide extensive simulation results that compare the relative performance of the different algorithms and provide further insights into their practical utility. The proposed algorithms significantly outperform the straightforward approaches of testing items one-by-one, and of first identifying the defective set and then choosing the non-defective items from the complement set, in terms of the number of measurements required to ensure a given success rate. We investigate the use of adaptive group testing in the application of finding a spectrum hole of a specified bandwidth in a given wideband of interest. We propose a group testing based spectrum hole search algorithm that exploits sparsity in the primary spectral occupancy by testing a group of adjacent sub-bands in a single test. This is enabled by a simple and easily implementable sub-Nyquist sampling scheme for signal acquisition by the cognitive radios. Energy-based hypothesis tests are used to provide an occupancy decision over the group of sub-bands, and this forms the basis of the proposed algorithm to find contiguous spectrum holes of a specified bandwidth. We extend this framework to a multistage sensing algorithm that can be employed in a variety of spectrum sensing scenarios, including non-contiguous spectrum hole search. Our analysis allows one to identify the sparsity and SNR regimes where group testing can lead to significantly lower detection delays compared to a conventional bin-by-bin energy detection scheme. We illustrate the performance of the proposed algorithms via Monte Carlo simulations.
26

Methods for Identifying Acoustic Emissions From the Front Face of a Small Piezoelectric Blower

Solomon, Brad K. 12 December 2012 (has links) (PDF)
This thesis focuses on identifying acoustic noise generating components in piezoelectric blowers through transverse velocity measurements and the development of a numerical fluid model. Piezoelectric ceramics have proven useful for many industries and areas of research involving: high precision actuators, noise control, ultrasonic devices, and many other areas. As of late, a unique adaptation of piezoelectric ceramics is surfacing in the area of pumping and cooling. Air pumps that use these ceramics replace the traditional electric motor, resulting in lower power consumption, less moving parts, constant pressure gradients, lower overall weight, and a low profile. The current drawback of this application is the acoustic radiation produced by the blowers. Since these blowers are new to market, little research or development has been done to characterize the noise emissions. This thesis studies the acoustic emissions from the front face of a Murata piezoelectric blower. Jet noise and structural vibrations are two acoustic sources of interest that are studied in this research. A Direct Numerical Simulation (DNS) of the fluid flow through a Murata blower is developed to better identify noise generating mechanisms. The model solutions predict trends in sound pressure levels (SPL) of the jet noise and volumetric flow rates. Both the SPL and flow rate are shown to be functions of critical geometrical dimensions within the flow path of a Murata blower. Important dimensional components are identified as well as non-influential ones. Design guidelines are given to reduce noise emission from the front side of a blower and increase the volumetric flow rate. The results of this research have a direct impact on the piezoelectric blower industry and future blower designs.
27

Direct Voltage Control Architectures for Motor Drives

Boler, Okan 09 August 2022 (has links)
No description available.
28

Vers une compréhension du bruit provenant de la parole dans les écoles : quel est le rôle du design visuel?

Chang, Tiffany 06 1900 (has links)
Les salles de classe sont des milieux bruyants auditivement et visuellement. Au Québec, le bruit auditif dans les écoles s’avère une problématique qui règne depuis des dizaines d’années et qui reste encore d’actualité aujourd’hui. Le bruit environnant peut impacter négativement le bien-être et les apprentissages des élèves et le bien-être des enseignant·es. D’autant plus, souvent, la source principale de bruit dans les écoles provient de la parole, un comportement qui peut être contrôlé. Les élèves et surtout les enseignant·es surchargent leur système vocal pour pouvoir faire passer leur message oral à travers le bruit auditif, augmentant leur niveau d’effort vocal. Dans les salles de classe, les distractions visuelles telles que les affiches murales contribuent à l’encombrement visuel, qui peut être considéré comme du « bruit visuel ». Celui-ci peut également impacter négativement le bien-être des élèves et leurs apprentissages. Considérant la nature multimodale, ou audiovisuelle, de la parole, nous nous questionnions sur l’influence de l’encombrement visuel sur la parole. Ce mémoire de maîtrise, composé de deux études, avait pour but de 1) étudier la perception subjective des élèves québécois de leur salle de classe en relation avec des données acoustiques objectives, et 2) étudier l’effet de l’encombrement visuel sur l’effort vocal en termes de paramètres acoustiques (SPL, f0 et CPP) et de perception auto-rapportée de locutrices. Les deux études se sont basées sur des méthodes mixtes, intégrant des méthodes quantitatives similaires (ex. : collecte de mesures objectives acoustiques, analyses acoustiques) et des méthodes qualitatives similaires (ex. : collecte de données subjectives perceptuelles, analyse inductive de questions ouvertes). Les analyses quantitatives et qualitatives des deux études révèlent que bien que les résultats relatifs aux données objectives (mesures acoustiques) n’étaient pas statistiquement significatifs, les résultats relatifs aux données subjectives (perception) l’étaient. Par exemple, dans la première étude, les niveaux d’appréciation du son des élèves (EAE) n’étaient pas tous corrélés avec les SPLs, et dans la deuxième étude, le niveau d’encombrement visuel n’était pas corrélé aux paramètres acoustiques de SPL, f0 et CPP. Ces résultats mettent en lumière l’importance de considérer et d’inclure des données subjectives et perceptuelles dans les études portant sur les paysages sonores éducatifs et sur l’effort vocal, car ce sont des expériences vécues par des humains. / Classrooms are acoustically and visually noisy environments. In Quebec, auditory noise in schools is a problem that has existed for decades and is still relevant today. Background noise can negatively impact the well-being and learning of students and the well-being of teachers. Moreover, the main source of noise in schools comes from speech, a behavior that can be controlled. Students and especially teachers put pressure on their vocal system to be able to convey their oral message through auditory noise, increasing their level of vocal effort. In classrooms, visual distractions such as wall posters can be considered as visual clutter, or visual noise, an element that can also negatively impact students’ well-being and learning. Considering the multimodal, or audiovisual, nature of speech, we question the influence of visual clutter on speech. This master's thesis, composed of two studies, aimed to 1) study the subjective perception of Quebec students of their classroom in relation to objective acoustic data, and 2) study the effect of visual clutter on vocal effort in terms of acoustic parameters (SPL, f0 and CPP) and self-reported perception of female speakers. Both studies were based on mixed methods, integrating similar quantitative methods (e.g., collection of objective acoustic measurements, acoustic analyses) and similar qualitative methods (e.g., collection of subjective perceptual data, inductive analysis of open-ended questions). Quantitative and qualitative analyses of the two studies reveal that although the results relating to the objective data (acoustic measurements) were not statistically significant, the results relating to the subjective data (perception) were. For example, in the first study, students' Evaluation of the Acoustic Environment (EAE) were not all correlated with measured SPLs, and in the second study, the level of visual clutter was not correlated with acoustic parameters of SPL, f0 and CPP. These findings highlight the importance of considering and including subjective and perceptual data in studies of educational soundscapes and vocal effort, as the human experience is subjective.

Page generated in 0.061 seconds