• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 18
  • 14
  • 9
  • 6
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 73
  • 34
  • 24
  • 17
  • 17
  • 16
  • 16
  • 13
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The study of AlN thin film grown on bottom electrode under room temperature condition

Huang, Ching-Ju 15 May 2000 (has links)
In this study, highly C-axis oriented AlN thin films stacked upon Al bottom electrode on Si and Glass substrate are deposited with Reactive RF magnetron sputtering Technique. Three different sputtering systems were utilized to evaluate the optimized growth parameters. Room temperature growth was applied to the all system. During thin film growing , the substrate bias condition, sputtering work pressure, sputtering power and the N2 concentration are those key parameters to be adjusted in order to gain smooth surface morphology and highly C-axis prefer orientation AlN thin films. The crystallography of the deposited films was analyzed by x-ray diffraction (XRD). Film surface morphology was characterized by scanning electron microscopy (SEM). Meanwhile, transmission electron microscopy (TEM) was adopted to observe the microstructure and determine the grain size of the film. The results of the XRD patterns showed that in a 17cm long sputtering working distance condition, the AlN (002) can be obtained and the peak intensity can be increased when the sputtering power was fixed meanwhile reduced the working pressure and applied the negative bias on the substrate. The surface morphology can be improved with long working sputtering distance. The micrography of the TEM reveals that there is a transition region between Al metal and AlN film. Fine column structures can be observed in the initial growth stage. The size of the grain increased as the film became thicker. Strong AlN (002) ring pattern was obtained from the region of the top of the film. It indicates that the AlN (002) will not appear till the thickness of the film reach the critical thickness.
32

Investigation of Package Parasitic on the Performance of SAW Filter

Lin, Kuan-Yu 08 July 2002 (has links)
Because SAW filters are small, high reliability, and it cannot be easily integrated with silicon substrate, they have become one of the most popular communication passive components recently. As the working frequency becomes higher, SAW filters are more sensitive to electromagnetic interference introduced by the package. Discrepancy in performance between design and measurement can be large if the packing effects are not considered. In this thesis, we make use of Finite Difference Time Domain method (FDTD) and develop a procedure combining High Frequency Structure Simulator (HFSS) with ADS software to simulate electromagnetic effect of a packaged SAW Filter. This is a full-wave method that integrates electromagnetic wave and acoustic wave. Measurement is also carried out to verify the simulated results. Preliminary results show that this method that we provide can predict frequency response in package effectively. Our Prediction can save factory design time and production cost.
33

Synthesis and Bulk Acoustic Wave Properties of the Dual Mode Solidly Mounted Resonators

Chung, Chung-jen 25 December 2008 (has links)
The solidly mounted resonator (SMR) is constructed of a Bragg reflector and a piezoelectric layer AlN. In order to obtain an appropriate SMR for the high frequency communication applications and high sensitivity bio-sensor applications, the Bragg reflector, the AlN, and the loading effect have been investigated thoroughly. The thesis presents the influences of surface roughness of the Bragg reflector and materials¡¦ selection on the resonance characteristics of an SMR. Three combinations of thin films, AlN/Al, Mo/Ti, and Mo/SiO2, are adopted. Originally, an AlN/Al multi-layer is used as the Bragg reflector. The poor surface roughness of this Bragg reflector results in a poor SMR frequency response. To improve the surface roughness of Bragg reflectors, a Mo/Ti multi-layer with a similar coefficient of thermal expansion is adopted. By controlling deposition parameters, the surface roughness of the Bragg reflector is improved. Finally, a material combination of Mo/SiO2 with high acoustic impedance ratio of 4.7 is adopted. Better resonance characteristics of SMR are obtained. The experimental results show a distinct resonance phenomenon around 2.5 GHz and excellent noise restraint. Afterwards, a ¼£f mode SMR is experimentally realized. The selection of high and low acoustic impedance for the first layer beneath piezoelectric layer results in the ¼£f mode and ½ £f mode resonance configurations, respectively. The coupling coefficient Keff2 of 6.9% is obtained, which is in agreement with the theoretical analysis. Following, the theoretical analysis upon the dual mode frequency-shift was characterized, and a modified formula was carried out. The c-axis tilted angle of AlN was altered as well as the various mass loading on the SMR. Based on the experimental results, the dual resonance frequencies showed a nonlinear decreasing trend with a linear increase of the mass loading. Furthermore, the ratio of the longitudinal resonant frequency to the shear resonant frequency remained at a range around 1.76 despite the various c-axis tilted angles of AlN and gradual mass loading on the SMR. The electromechanical coupling coefficient, keff2, of the shear resonance rose with the increase of the c-axis tilted angle of AlN. However, the longitudinal resonance fades away with the AlN c-axis tilted angle, and the quality factor of the longitudinal resonance decreases. Finally, the dual mode resonances are improved by tilting the off-center substrates toward the sputtering source and successfully enhance the longitudinal resonance while preserve the shear resonance at the same time. Not only the shear resonance for the liquid-based sensing application, but also an outstanding longitudinal resonance could be obtained. The practicability of the dual-mode resonator is extended for the applications of high frequency wireless communication and high sensitivity bio-chemical sensors.
34

Fabrication and Characteristic Optimization of TFBAR Filters

Chen, Shin-Hua 17 August 2009 (has links)
In this study, the ladder-type filters based on back-etched thin film bulk acoustic resonator (TFBAR) were fabricated with several patterns to investigate the influence on their frequency responses. The highly c-axis oriented ZnO films were deposited on silicon substrates by reactive RF magnetron sputtering. The optimal two-step deposition temperature for ZnO films is 100 ¢J, which is obtained by means of SEM AFM, and XRD analysis. According to the experimental results, it leads to good resonance responses as TFBAR filters are fabricated with the patterns of large resonance area, two stages and the ratio of shunt/series resonance area is equal to two. Herein, conventional thermal annealing (CTA) was adopted to improve the frequency responses of TFBAR filters. Because CTA treatment can release stress and improve surface roughness of ZnO and Pt films, it enhances the frequency responses of TFBAR filters. The optimal CTA treatment temperature for TFBAR filters is 400 ¢J. Finally, TFBAR filters show the good performances with insertion loss of -8.138 dB, band rejection of 10.9 dB and bandwidth of 37.125 MHz.
35

Predicting acoustic intensity fluctuations induced by nonlinear internal waves in a shallow water waveguide

Sagers, Jason Derek 20 November 2012 (has links)
Many problems in shallow water acoustics require accurate predictions of the acoustic field in space and time. The accuracy of the predicted acoustic field depends heavily on the accuracy of the inputs to the propagation model. Oceanographic internal waves are known to introduce considerable temporo-spatial variability to the water column, subsequently affecting the propagation of acoustic waves. As a result, when internal waves are present, errors in model inputs can significantly degrade the accuracy of the predicted acoustic field. Accurate temporo-spatial predictions of the acoustic field in the presence of internal waves therefore depend largely on one's ability to accurately prescribe the water column properties for the acoustic model. This work introduces a data-driven oceanographic model, named the evolutionary propagated thermistor string (EPTS) model, that captures the temporo-spatial evolution of the internal wave field along a fixed track, thereby permitting prediction of temporal fluctuations in the acoustic field. Simultaneously-measured oceanographic and acoustic data from the Office of Naval Research Shallow Water 2006 experiment are utilized in this work. Thermistor measurements, recorded on four oceanographic moorings spaced along the continental shelf, provide the data from which the EPTS model constructs the internal wave field over a 30 km track. The acoustic data were acquired from propagation measurements over a co-located path between a moored source and a vertical line array. Acoustic quantities computed in the model space, such as received level, depth-integrated intensity, and scintillation index are directly compared to measured acoustic quantities to evaluate the fidelity of the oceanographic model. In addition, a strong correlation is observed between the amplitude of the internal wave field and acoustic intensity statistics at a distant receiving array. It is found that the EPTS model possessed sufficient fidelity to permit the prediction of acoustic intensity distributions in the presence of nonlinear internal waves. / text
36

Atenuação de ondas acústicas superficiais em filmes finos granulares supercondutores de Pb / Surface acoustic waves attenuation in granular superconducting Pb thin films

Hiroshi Tejima 17 August 1983 (has links)
Este trabalho tem por objetivo a investigação de atenuação de ondas acústicas superficiais (OAS) em filmes finos granulares supercondutores de PbO e Pb depositados por sputtering reativo em substratos piezoelétricos de LiNbO3 e quartzo (ST). As medidas de atenuação de OAS em função da temperatura foram efetuadas para diferentes potências de radiofreqüência, e em freqüência variando de 550 MHz a aproximadamente 700 MHz. A atenuação de OAS medida em filme granular de chumbo (550&#197), dotada de alta resistividade de filme (de 1000 &#937/&#9001) se manifesta piezoeletricamente induzida e proporcional à resistividade do filme. No estado supercondutor esta medida de atenuação excede esta simples relação. Esta atenuação excedente é atribuída à resistência local produzida pela presença de dipolos de vórtice-antivórtice / The subject of this work is the investigation of surface acoustic waves (SAW) on superconducting Pb and PbO granular thin films deposited by sputtering on piezoelectric substrate (LiNbO3 and quartz ST). The SAW attenuation was measured as a function of the temperature (1,3K to 20K) for different r.f. Power, in frequencies from 550 MHz to 700 MHz. The SAW attenuation, measured on granular lead film (550 &#197) with high sheet resistivity (1000 &#937/&#9001) appears to be piezoelectrically induced and should be proportional to the sheet resistivity. In the superconducting state the measured attenuation exceeds this simple relation. This excess attenuation is ascribed to the local resistance produced by the presence of vortex-antivortex dipoles
37

Electron dynamics in surface acoustic wave devices

Thorn, Adam Leslie January 2009 (has links)
Gallium arsenide is piezoelectric, so it is possible to generate coupled mechanical and electrical surface acoustic waves (SAWs) by applying a high-frequency voltage to a transducer on the surface of GaAs. By combining SAWs with existing low-dimensional nanostructures one can create a series of dynamic quantum dots corresponding to the minima of the travelling electric wave, and each dot carries a single electron at the SAW velocity (~ 2800 m/s). These devices may be of use in developing future quantum information processors, and also offer an ideal environment for probing the quantum mechanical behaviour of single electrons. This thesis describes a numerical and theoretical study of the dynamics ofan electron in a range of geometries. The numerical techniques for solving thetime-dependent Schrödinger equation with an arbitrary time-dependent potential will be described in Chapter 2, and then applied in Chapter 3 to calculate the transmission of an electron through an Aharonov-Bohm (AB) ring. It will be seen that an important property of the techniques used in this thesis is that they can be easily adapted to study realistic geometries, and we will see features in the AB oscillations which do not arise in simplified analytic descriptions. In Chapter 4, we will then study a device consisting of two parallel SAW channels separated by a controllable tunnelling barrier. We will use numerical simulations to investigate the effect of electric and magnetic fields upon the electron dynamics, and develop an analytic model to explain the simulation results. From the model, it will be apparent that it is possible to use this device to rotatethe state of the electron to an arbitrary superposition of the first two eigenstates. We then introduce coherent and squeezed states in Chapter 5, which are ex-cited states of the quantum harmonic oscillator. Coherent and squeezed electronicstates may be of use in quantum information processing, and could also arise dueto unwanted perturbations in a SAW device. We will discuss how these statescan be controllably generated in a SAW device, and also discuss how they couldthen be detected. In Chapter 6 we describe how to use the motion of a SAW to create a rapidly-changing potential in the frame of the electron, leading to a nonadiabatic excita-tion. The nonadiabatically-excited state oscillates from side to side within a 1Dchannel on a few-picosecond timescale, and this motion can be probed by placing a tunnelling barrier at one side of the channel. Numerical simulations will beperformed to show how this motion can be controlled, and the simulation resultswill be seen to be in good agreement with recent experimental work performed by colleagues. Finally, we will show that this device can be used to measure the initial state of an electron which is an arbitrary superposition of the first twoeigenstates.
38

Study of High-Throughput Particle Separation Device Based on Standing Surface Acoustic Wave (SSAW) Technology

Wang, Zhuochen 17 August 2012 (has links)
No description available.
39

Acoustic Waveguides and Sensors for High Temperature and Gamma Radiation Environment

He, Jiaji 12 January 2021 (has links)
Sensing in harsh environments is always in great need. Although many sensors and sensing systems are reported, such as optical fiber sensors and acoustic sensors, they all have drawbacks. In this dissertation, fused quartz and sapphire acoustic waveguides and sensors are developed for high temperature and heavy gamma radiation. The periodic structure, acoustic fiber Bragg grating (AFBG), is the core sensor structure in this dissertation. To better analyze the propagation of acoustic waves, the acoustic coupled more analysis is proposed. It could solve for the reflection spectrum of the AFBG with at most 2.1% error. For the waveguide, the fused quartz "suspended core" waveguide is designed. It achieved strong acoustic energy confinement so surface perturbations no longer affected the wave propagation. Single crystal sapphire fiber features low acoustic loss, and survivability under high temperature. It is also chosen as an acoustic waveguide. AFBGs are fabricated in both waveguides. The fused quartz suspended core AFBG is shown to sense temperature up to 1000 C and to have stable reading at 700 C for 14 days. The sapphire AFBG as a temperature sensor works up to 1500 C and also provides continuous stable reading at 1100 C for 12 days. Both waveguides with AFBGs are then tested under long-term gamma radiation. Despite some fluctuations from radiation-related causes, the readings of both sensors generally remain stable. Given the experimental observations, the fused quartz AFBG waveguide and the sapphire AFBG waveguide are shown to work well in high temperature and gamma radiations. / Doctor of Philosophy / Sensing in harsh environments, like high temperature, high pressure, and corrosive environment, is always in great need. Efficient and safe operation of instruments like nuclear reactors could be better secured. Although many sensors and sensing systems are reported, such as optical fiber sensors and acoustic sensors, they all have drawbacks so new designs are constantly in need. In this dissertation, silica (a glass commonly acquired by melting sand) and sapphire (used in iphone screens due to its transparency and hardness) acoustic waveguides and sensors are developed. A periodic structure known as acoustic fiber Bragg grating (AFBG) is the core sensor structure in this dissertation. A calculation method is proposed first. Acoustic wave needs a waveguide to propagate somewhere further, and a new waveguide structure is made to keep the acoustic energy within the very center of the waveguide, so any change on the outer surface does not affect the wave inside. Also, sapphire has good acoustic property and is used. The AFBGs are fabricated in both waveguides. These sensing waveguides are shown to work at >1000 C temperature and provide stable reading for more than 10 days. Long term exposure to gamma radiation for weeks or months resulted in stable performances. Therefore, it is concluded that silica and sapphire waveguide sensors are successfully developed for high temperature and nuclear radiation applications.
40

Performance Comparison of Higher-Order Euler Solvers by the Conservation Element and Solution Element Method

Underwood, Tyler Carroll 29 September 2014 (has links)
No description available.

Page generated in 0.0743 seconds