• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • Tagged with
  • 154
  • 154
  • 154
  • 85
  • 55
  • 41
  • 39
  • 38
  • 36
  • 34
  • 34
  • 33
  • 28
  • 27
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Self-Excited Oscillations of the Impinging Planar Jet

Arthurs, David 10 1900 (has links)
<p>This thesis experimentally investigates the geometry of a high-speed subsonic planar jet impinging orthogonally on a large, rigid plate at some distance downstream. This geometry has been found to be liable to the production of intense narrowband acoustic tones produced by self-excited flow oscillations for a range of impingement ratio, Mach number and nozzle thickness. Self-excited flows and acoustic tones were found to be generated in two distinct flow regimes: a linear regime occurring at relatively low Mach number, and a fluid-resonant regime occurring at higher Mach numbers. The linear regime has been found to generate acoustic tones exhibiting relatively low pressure amplitudes with frequencies which scale approximately linearly with increasing Mach number, and is produced by a traditional feedback mechanism, whereas tones within the fluid-resonant regime are produced by coupling between the unstable hydrodynamic modes of the jet and trapped acoustic modes occurring between the nozzle and the plate, and produce tones at significantly larger amplitudes. Coupling with these trapped acoustic modes was found to dominate the self-excited response of the system in the fluid-resonant regime, with the frequencies of these acoustic modes determining the unstable mode of the jet being excited, and with the impingement ratio of the flow having only minor effects related to the convection speed. Phase-locked PIV measurements have revealed that self-excited flow oscillations in the fluid-resonant regime are produced by a series of five anti-symmetric modes of the jet, along with a single symmetric mode occurring for small impingement ratios. The behavior of large coherent flow structures forming in the flow has been investigated and quantified, and this information has been used to develop a new feedback model, which can be used to accurately predict the self-excited flow oscillation of the jet.</p> / Doctor of Philosophy (PhD)
32

Synthetic Jet Actuator for Active Flow Control

Abdou, Sherif 04 1900 (has links)
<p>This thesis investigates the characteristics of a long aspect ratio synthetic jet actuator and its application for the active control of the vibrations of the downstream cylinder in a tandem cylinder arrangement.</p> <p>A long aspect ratio synthetic jet is produced through an axial slit along part of the length of a cylinder. The jet is excited acoustically by a pair of loudspeakers mounted at the cylinder terminations. The study compares between the performance of two different slits with aspect ratios of 273 and 773. The comparison is based on the spanwise distribution of the mean jet velocity and phase between the jet velocity fluctuations and the excitation signal. Three different frequencies and amplitudes are used to excite the speakers covering the range of frequencies used in the control application.</p> <p>For both cases studied the mean centerline velocity of the jet increases with increasing the amplitude of the exciting signal, but decreases with increasing its frequency. Moreover, velocity deficits of up to 30% are evident as the midspan of the cylinder is approached from either end. Similar trends are also observed for the centerline phase distributions of the velocity fluctuations, with deficits of up to 130°. However, it is observed that for the long slit case the deficits in both the velocity and phase distributions are much larger than those for the short one.</p> <p>The synthetic jet is then mounted in the upstream cylinder of a tandem cylinder arrangement to be used as a control actuator for controlling the vibrations of the downstream cylinder. A simple feedback control mechanism is used at a Reynolds</p> <p>number of about 6.3x104. This Reynolds number corresponds to the case where the iii</p> <p>downstream cylinder’s response is dominated with two frequency components, one at the resonance frequency of the cylinder, which is excited by broadband turbulence in the flow, and the other at the vortex shedding frequency. Both slits studied for the characterization experiments are used to compare their performance as control actuators.</p> <p>Both jets produce comparable reductions in the vibration of the downstream cylinder. A reduction of about 20% in the total RMS amplitude of the vibrations signal is achieved. This amounts to a reduction of about 50% in the resonant peak and an average value of about 40% in the vortex shedding peak. The optimal values of gain and time lag of the controller are then used to investigate the effect of the jet on the flow. It is found that the short slit jet produced an effect that was traced up to 1.875 diameters downstream, while the effect of the long slit jet dropped dramatically very close to the upstream cylinder.</p> / Master of Applied Science (MASc)
33

Fault Detection and Diagnosis of a Diesel Engine Valve Train

Flett, Justin A. 01 April 2015 (has links)
One of the most commonly used mechanical systems is the internal combustion engine. Internal combustion engines dominate the automotive industry, and have numerous other applications in generation, transportation, etc. This thesis presents the development of a fault detection and diagnosis (FDD) system for use with an internal combustion engine valve train. A FDD system was developed with a focus on the valve impact amplitudes. Engine cycle averaging and band-pass filtering methods were tuned and utilized for improving the signal to noise ratio. A novel feature extraction method was developed that included a local RMS sliding window method and an adaptive threshold. Faults were seeded in the form of deformed valve springs, as well as abnormal valve clearances. The engine’s manufacturer specifies that a valve spring with 3 mm or more of deformation should be replaced. This thesis investigated the detection of a relatively small 0.5mm spring deformation. Valve clearance values were adjusted 0.1mm above and below the nominal clearance value (0.15mm) to test large clearance faults (0.25mm) and small clearance faults (0.05mm). The performance of the FDD system was tested using an instrumented diesel engine test bed. A comparison of numerous signal processing techniques and classification methods was performed. / Master of Applied Science (MASc)
34

A SUBSYSTEM IDENTIFICATION APPROACH TO MODELING HUMAN CONTROL BEHAVIOR AND STUDYING HUMAN LEARNING

Zhang, Xingye 01 January 2015 (has links)
Humans learn to interact with many complex dynamic systems such as helicopters, bicycles, and automobiles. This dissertation develops a subsystem identification method to model the control strategies that human subjects use in experiments where they interact with dynamic systems. This work provides new results on the control strategies that humans learn. We present a novel subsystem identification algorithm, which can identify unknown linear time-invariant feedback and feedforward subsystems interconnected with a known linear time-invariant subsystem. These subsystem identification algorithms are analyzed in the cases of noiseless and noisy data. We present results from human-in-the-loop experiments, where human subjects in- teract with a dynamic system multiple times over several days. Each subject’s control behavior is assumed to have feedforward (or anticipatory) and feedback (or reactive) components, and is modeled using experimental data and the new subsystem identifi- cation algorithms. The best-fit models of the subjects’ behavior suggest that humans learn to control dynamic systems by approximating the inverse of the dynamic system in feedforward. This observation supports the internal model hypothesis in neuro- science. We also examine the impact of system zeros on a human’s ability to control a dynamic system, and on the control strategies that humans employ.
35

DETERMINATION OF ISOLATOR TRANSFER MATRIX AND INSERTION LOSS WITH APPLICATION TO SPRING MOUNTS

Sun, Shishuo 01 January 2015 (has links)
Transmissibility is the most common metric used for isolator characterization. However, engineers are becoming increasingly concerned about energy transmission through an isolator at high frequencies and how the compliance of the machine and foundation factor into the performance. In this study, the transfer matrix approach for isolator characterization is first reviewed. Two methods are detailed for determining the transfer matrix of an isolator using finite element simulation. This is accomplished by determining either the mobility or impedance matrix for the isolator and then converting to a transfer matrix. One of the more useful metrics to characterize the high frequency performance of an isolator is insertion loss. Insertion loss is defined as the difference in transmitted vibration in decibels between the unisolated and isolated cases. Insertion loss takes into account the compliance on the source and receiver sides. Accordingly, it has some advantages over transmissibility which is a function of the damping and mounted resonant frequency. A static analysis is to preload the isolator so that stress stiffening is accounted for. This is followed by modal and forced response analyses to identify the transfer matrix of the isolator. In this paper, the insertion loss of spring isolators is examined as a function of several geometric parameters including the spring diameter, wire diameter, number of active coils, and height. Results demonstrate how modifications to these parameters affect the insertion loss and the first surge frequency.
36

monitoR: Automation Tools For Landscape-scale Acoustic Monitoring

Katz, Jonathan Edward 01 January 2015 (has links)
Climate change coupled with land-use change will likely alter habitats and affect state parameters of the animal populations that dwell in them. Affected parameters are anticipated to include site occupancy and abundance, population range, and phenophase cycles (e.g., arrival dates on breeding grounds for migrant bird species). Detecting these changes will require monitoring many sites for many years, a process that is well suited for an automated system. We developed and tested monitoR, an R package that is designed for long-term, multi-taxa automated passive acoustic monitoring programs. monitoR correctly identified presence for black-throated green warbler and ovenbird in 64% and 72% of the 52 surveys using binary point matching, respectively, and 73% and 72% of the 52 surveys using spectrogram cross-correlation, respectively. Of individual black-throated green warbler song events, 73% of 166 black-throated green warbler songs and 69% of 502 ovenbird songs were identified by binary point matching. Spectrogram cross correlation identified 64% of 166 black-throated green warbler songs and 64% of 502 ovenbird songs. False positive rates were We describe a method to identify the probability of survey presence in a template-based automated detection system using known false positive rates for each template. True and false positive detection rates were observed in 146 training surveys. These probabilities were used in a Bayesian approach that discriminates between detections in occupied surveys and unoccupied surveys. We evaluated this approach in 146 test surveys. A total of 1142 Black-throated green warbler (Setophaga virens) songs were observed in the training surveys and test surveys, which we attempted to locate with 3 different binary point matching templates. When only posterior probabilities greater than 0.5 were considered detections, the average ratio of accurate identifications of survey presence to false positive identifications in 500 bootstrapped samples improved from 1.2:1 using a standard score cutoff approach to 2.8:1 using all 3 templates and a likelihood-based discriminator. With the selected score cutoffs the average true positive and false positive rates for the combined three templates were 0.18 and 0.002, respectively. Automated detection methods are increasingly being used for identification and monitoring of landscape-scale responses to climate change and land-use change. Skepticism of automated acoustic monitoring software is largely due to higher false positive and negative error rates than those in traditional human surveys, but the false positive multiple method occupancy model is capable of estimating detection parameters and occupancy state when one method has occasional false positive detections. We test the accuracy of the model when automated detection of black-throated green warbler is mixed with human detection in 4 recorded surveys at 60 sites. Precision and accuracy are evaluated by simulation, and we use the results to optimize future sampling. In simulation, parameter estimates by the multiple method occupancy model are close to those we computed manually when two surveys are manually analyzed. Our results support the use of the multiple method false positive occupancy model to track detection rates in automated monitoring programs.
37

Nonlinear Ball Chain Waveguides For Acoustic Emission And Ultrasound Sensing Of Ablation

Pearson, Stephen Herbert 01 January 2014 (has links)
Harsh environment acoustic emission and ultrasonic wave sensing applications often benefit from placing the sensor in a remote and more benign physical location by using waveguides to transmit elastic waves between the structural location under test and the transducer. Waveguides are normally designed to have high fidelity over broad frequency ranges to minimize distortion - often difficult to achieve in practice. This thesis reports on an examination of using nonlinear ball chain waveguides for the transmission of acoustic emission and ultrasonic waves for the monitoring of thermal protection systems undergoing severe heat loading, leading to ablation and similar processes. Experiments test the nonlinear propagation of solitary, harmonic and mixed harmonic elastic waves through a copper tube filled with steel and elastomer balls and various other waveguides. Triangulation of pencil lead breaks occurs on a steel plate. Data are collected concerning the usage of linear waveguides and a water-cooled linear waveguide. Data are collected from a second water-cooled waveguide monitoring Atmospheric Reentry Materials in UVM's Inductively-Coupled Plasma Torch Facility. The motion of the particles in the dimer waveguides is linearly modeled with a three ball and spring chain model and the results are compared per particle. A theoretical nonlinear model is presented which is capable of exactly modeling the motion of the dimer chains. The shape of the waveform propagating through the dimer chain is modeled in a sonic vacuum. Mechanical pulses of varying time widths and amplitudes are launched into one end of the ball chain waveguide and observed at the other end in both time and frequency domains. Similarly, harmonic and mixed harmonic mechanical loads are applied to one end of the waveguide. Balls of different materials are analyzed and discriminated into categories. A copper tube packed with six steel particles, nine steel or marble particles and a longer copper tube packed with 17 steel particles are studied with a frequency sweep. The deformation experienced by a single steel particle in the dimer chain is approximated. Steel ball waveguides and steel rods are fitted with piezoelectric sensors to monitor the force at different points inside the waveguide during testing. The corresponding frequency responses, including intermodulation products, are compared based on amplitude and preloads. A nonlinear mechanical model describes the motion of the dimer chains in a vacuum. Based on the results of these studies it is anticipated that a nonlinear waveguide will be designed, built, and tested as a possible replacement for the high-fidelity waveguides presently being used in an Inductively Coupled Plasma Torch facility for high heat flux thermal protection system testing. The design is intended to accentuate acoustic emission signals of interest, while suppressing other forms of elastic wave noise.
38

IMPEDANCE-TO-SCATTERING MATRIX METHOD FOR LARGE SILENCER ANALYSIS

Wang, Peng 01 January 2017 (has links)
Large silencers used in the power generation industry usually have a very large cross section at the inlet and outlet. Higher-order modes will populate the inlet and outlet even at very low frequencies. Although the silencer itself is often modeled by a three-dimensional analysis tool such as the boundary element method (BEM) or finite element method (FEM), a direct computation of the transmission loss (TL) from the BEM or FEM model can be challenging without incorporating certain forms of modal expansion. A so-called “impedance-to-scattering matrix method” is proposed to extract the modes at the inlet and outlet from the BEM impedance matrix based on the point collocation method. The BEM impedance matrix relates the sound pressures at the inlet and outlet to the corresponding particle velocities, while the scattering matrix relates the modes at the inlet and outlet. Normally there are more boundary elements than the total number of modes at the inlet and outlet, and a least-squares procedure is used to condense the element-based impedance matrix to the mode-based scattering matrix. The TL computation will follow if a certain form of the incident wave is assumed and the outlet is non-reflective. Several commonly used inlet/outlet configurations are considered in this dissertation, which include axisymmetric, non-axisymmetric circular, and rectangular inlet/outlet shapes. In addition to the single inlet and outlet silencers, large multi-inlet and multi-outlet silencers are also investigated. Besides the collocation-based impedance-to-scattering matrix method, an integral-based impedance-to-scattering matrix method based on the reciprocal identity is also proposed for large silencer analysis. Although it may be more time-consuming to perform the additional numerical integration, an integral-based method is free of any uncertainties associated with collocation points. The computational efficiency, accuracy and stability are compared between two proposed methods. One bonus effect of producing the scattering matrix is that it can also be used to combine subsystems in series connection. The Redheffer’s star product is introduced to combine scattering matrices of subsystems. In the design stage, rapid assessment of the silencer performance is always preferred. However, the existing analytical approaches are only suitable for simple dissipative silencers such as straight lined ducts. A two-dimensional first-mode semi-analytical solution is developed to quickly evaluate the performance of tuned dissipative silencers below the cut-off frequency. The semi-analytical solution can also serve as a validation tool for the BEM.
39

NUMERICAL AND EXPERIMENTAL TECHNIQUES FOR ASSESSING THE ACOUSTIC PERFORMANCE OF DUCT SYSTEMS ABOVE THE PLANE WAVE CUTOFF FREQUENCY

Ruan, Kangping 01 January 2018 (has links)
This research deals with determining the acoustic attenuation of heating, ventilation, and air conditioning (HVAC) ductwork. A finite element approach was developed for calculating insertion loss and breakout transmission loss. Procedures for simulating the source and receiving rooms were developed and the effect of structureborne flanking was included. Simulation results have been compared with measurements from the literature and the agreement is very good. With a good model in place, the work was extended in three ways. 1) Since measurements on full-scale equipment are difficult, scale modeling rules were developed and validated. 2) Two different numerical approaches were developed for evaluating the transmission loss of silencers taking into account the effect of higher order modes. 3) A power transfer matrix approach was developed to assess the acoustic performance of several duct components connected in series.
40

ATTITUDE CONTROL ON SO(3) WITH PIECEWISE SINUSOIDS

Wang, Shaoqian 01 January 2018 (has links)
This dissertation addresses rigid body attitude control with piecewise sinusoidal signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal inputs. We present a new closed-form solution of the rotation matrix kinematics. The solution is analyzed and used to prove controllability. We then present kinematic-level orientation-feedback controllers for setpoint tracking and command following. Next, we extend the sinusoidal kinematic-level control to the dynamic level. As a representative dynamic system, we consider a CubeSat with vibrating momentum actuators that are driven by small $\epsilon$-amplitude piecewise sinusoidal internal torques. The CubeSat kinetics are derived using Newton-Euler's equations of motion. We assume there is no external forcing and the system conserves zero angular momentum. A second-order approximation of the CubeSat rotational motion on SO(3) is derived and used to derive a setpoint tracking controller that yields order O(ε2) closed-loop error. Numerical simulations are presented to demonstrate the performance of the controls. We also examine the effect of the external damping on the CubeSat kinetics. In addition, we investigate the feasibility of the piecewise sinusoidal control techniques using an experimental CubeSat system. We present the design of the CubeSat mechanical system, the control system hardware, and the attitude control software. Then, we present and discuss the experiment results of yaw motion control. Furthermore, we experimentally validate the analysis of the external damping effect on the CubeSat kinetics.

Page generated in 0.1004 seconds