• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 21
  • 11
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 142
  • 142
  • 142
  • 109
  • 108
  • 32
  • 28
  • 26
  • 21
  • 19
  • 18
  • 17
  • 17
  • 16
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Quantification of phosphorus in extracellular polymeric substances (EPS) associated with the activated sludge flocs

Thosago, Mmatheetja Phineas 05 September 2005 (has links)
Please read the abstract in the front section of this document / Dissertation (MSc (Microbiology))--University of Pretoria, 2005. / Microbiology and Plant Pathology / unrestricted
72

Bioaugmentation of activated sludge for enhanced phosphorus removal

Ntshudisane, Beverly Mmama 16 February 2006 (has links)
Please read the abstract in the front section of this document / Dissertation (MSc (Microbiology))--University of Pretoria, 2006. / Microbiology and Plant Pathology / unrestricted
73

Morphological and molecular identification of filamentous microorganisms associated with bulking and foaming activated sludge

Wagner, Ankia Marleen 24 November 2005 (has links)
The activated sludge process comprises a complex and enriched culture of a mixture of generalist and specialist organisms. The lack of knowledge on species diversity of microbial communities is due to the simplicity of bacterial morphology and the phenotypic characters, and the unculturable portion of microbial cells in natural habitats. Although a wide range of bacteria can be isolated using conventional microbiological techniques of sample dilution and spread plate inoculation, many well-known activated sludge bacteria can not be isolated using them. The individual microbial cells in activated sludge grow in aggregates that consist of floc-forming organisms together with filamentous microorganisms that form the backbone of the activated sludge floes. Overgrowth of these filamentous microorganisms often causes settling problems called bulking and foaming. These problems consist of slow settling, poor compaction of solids and foam overflow into the effluent. Although methods for the isolation of filamentous bacteria from mixed liquor samples have been investigated, the attempts have been largely unsuccessful. In this study we investigated bulking and foaming activated sludge to identify the dominant filamentous organisms using microscopy and molecular techniques. Using microscopy, the dominant filament associated with the foaming sample was "Microthrix parvicella" and in the bulking sample was Nocardia spp. The foaming sample was investigated using molecular techniques that involved 165 rDNA sequencing. Although some of the clones isolated from the sludge foam were associated with filamentous bacteria causing foam, no positive identification could be made. In the part of the study that was conducted in Australia, a rRNA-targeted oligonucleotide probe was designed for the identification of a filamentous organism occurring in activated sludge foam. This organism resembled Eikelboom Type 0041 and was classified in the candidate bacterial division TM7. The discrepancy that the sequence data did not indicate the dominant filamentous organisms observed by microscopy, highlights the fact that natural microbial communities need to be studied using a combination of techniques since none of the techniques available are sufficient to determine the complete community structure of complex communities such as activated sludge. / Dissertation (MSc (Microbiology))--University of Pretoria, 2005. / Microbiology and Plant Pathology / unrestricted
74

Development and optimization of remedial measures to control filamentous bacteria in a full-scale biological nutrient removal plant

Deepnarain, Nashia January 2014 (has links)
Submitted in fulfilment of the requirements of the degree of Master of Technology: Biotechnology, Durban University of Technology, Durban, South Africa, 2014. / Wastewater treatment plants (WWTPs) frequently experience bulking and foaming episodes, which present operational challenges by affecting sludge settling due to the excessive proliferation of filamentous bacteria. Various control strategies have been implemented over the years to minimize filamentous growth, however, filamentous bulking still remains an unresolved problem in many WWTPs worldwide. The current study focused on developing and optimizing remedial measures viz., specific and non-specific methods to reduce problematic filamentous bacteria in a full-scale WWTP. Specific methods demonstrated the influence of plant operational parameters viz. chemical oxygen demand, influent N-NH4+, food to microorganism ratio, dissolved oxygen, temperature and pH on the abundance of filamentous bacteria. A cumulative logit model was used to determine the significant relationships between the individual filamentous bacteria at present and the prevailing plant operational parameters. Using the above statistical approach, significant observations and predictions were made with respect to the individual filamentous growth under certain operational parameters. With further validation, this model could be successfully applied to other full-scale WWTPs identifying specific parameters that could contribute to filamentous bulking, thus providing a useful guide for regulating specific filamentous growth. Non-specific control methods such as chlorine, ultraviolet irradiation and ozone treatment were investigated on filamentous bacteria using a live/dead staining technique. To achieve at least 50% reduction of filamentous bacteria, a chlorine dose of 10 mg Cl2/L was required, all filaments were killed at a dose of 22 mg Cl2/L. In addition, an effective UV and ozone dose of 4418.91 μw seconds/cm2 and ±20 mg O3/L respectively, was required to kill 50% of the filamentous bacterial population. Among the three non-specific methods, ozone treatment seemed to be an effective method in controlling the filamentous population with a low negative impact to the surrounding environment. This study serves as a useful guide on the problems and control of filamentous bulking in activated sludge plants. / M
75

Anaerobic treatment of a paper plant effluent

Russo, Stephen Leonard January 1987 (has links)
The objective of this study was to investigate the anaerobic biological treatment of an organic-bearing wastewater from a particular paper manufacturing process at laboratory scale. The process produces paper by re-pulping waste paper. Effluent from the process has a Chemical Oxygen Demand (COD) concentration of approximately 4500 mg/l with a sulphate content of approximately 300 mg SO₄²⁻/l. The upflow anaerobic sludge bed (UASB) reactor was selected for the study. Important information derived from the laboratory treatability study was: (l) the extent of COD removal possible; (2) the effluent quality; (3) the maximum COD leading rate (kgCOD/m³ reactor/day) which can be achieved while maintaining reasonable COD removal, and the influence on loading rate of temperature: (4) the nature of the sludge produced in the reactor with particular reference to the extent of pelletisation: and (5) the effect of reactor effluent recycling on alkalinity requirements.
76

Denitrification kinetics in biological nitrogen and phosphorus removal activated sludge systems

Clayton, John Andrew January 1989 (has links)
In order to size the anoxic reactors in nutrient (N and P) removal activated sludge plants, it is essential to know the denitrification kinetics that are operative in such systems. To date, denitrification kinetics have been accurately defined only for systems that remove N alone; little research has been performed on denitrification in N and P removal plants.
77

The generation of nitrous oxide in bio-linesat the Wastewater Treatment Plant in Halmstad / The generation of nitrous oxide in bio-linesat the Wastewater Treatment Plant in Halmstad

Purba, Aldonna Jasa Prima January 2021 (has links)
This study describes the variation of an important greenhouse gas, nitrous oxide (N2O) at site-specific from the bio-lines unit at Wastewater Treatment Plant (WWTP) in Halmstad. The sampling campaign at the WWTP was carried out for three consecutive days during the weekdays in March 2021 with total of 144 samples were taken in GHG sample vials (exetainers) and analysed for N2O measurements using gas chromatography. Other nitrogen parameters data (NO2-N, NO3-N, and total nitrogen) were also collected. Using statistical analysis, comparisons were focused on a year period (March 2020 and 2021). This study found that N2O concentration generated in March 2021 was significantly lower than March 2020. Results also showed significant differences of N2O concentration between the three different zones (anaerobic, anoxic, and aerobic) among the bio-lines, where the highest N2O concentration was only found in aerobic zones. Correlation analysis showed only total nitrogen is negatively correlated with N2O-N in the aerobic zones. These findings will enable better understanding of processes along the bio-lines as a step for WWTP operators to improve N2O monitoring.
78

Development of a quantitative method for functional gene detection in pulp and paper wastewater treatment systems

Neufeld, Josh D. January 2000 (has links)
No description available.
79

Acetate and poly-b-hydroxybutyrate (PHB) metabolism by the activated sludge floc community of a hardwood Kraft pulp and paper mill

Pouliot, Cédrick January 2005 (has links)
No description available.
80

Design of the step-feed activated sludge process

Moreno, Oswaldo January 1987 (has links)
No description available.

Page generated in 0.3863 seconds