• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 343
  • 80
  • 25
  • 17
  • 11
  • 9
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • Tagged with
  • 634
  • 634
  • 207
  • 132
  • 74
  • 72
  • 66
  • 62
  • 60
  • 58
  • 56
  • 54
  • 49
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
631

Solid-Solution Strengthening and Suzuki Segregation in Co- and Ni-based Alloys

Dongsheng Wen (12463488) 29 April 2022 (has links)
<p>Co and Ni are two major elements in high temperature structural alloys that include superalloys for turbine engines and hard metals for cutting tools. The recent development of complex concentrated alloys (CCAs), loosely defined as alloys without a single principal element (e.g. CoNiFeMn), offers additional opportunities in designing new alloys through extensive composition and structure modifications. Within CCAs and Co- and Ni-based superalloys, solid-solution strengthening and stacking fault energy engineering are two of the most important strengthening mechanisms. While studied for decades, the potency and quantitative materials properties of these mechanisms remain elusive. </p> <p><br></p> <p>Solid-solution strengthening originates from stress field interactions between dislocations and solute of various species in the alloy. These stress fields can be engineered by composition modification in CCAs, and therefore a wide range of alloys with promising mechanical strength may be designed. This thesis initially reports on experimental and computational validation of newly developed theories for solid-solution strengthening in 3d transition metal (MnFeCoNi) alloys. The strengthening effects of Al, Ti, V, Cr, Cu and Mo as alloying elements are quantified by coupling the Labusch-type strengthening model and experimental measurements. With large atomic misfits with the base alloy, Al, Ti, Mo, and Cr present strong strengthening effects comparable to other Cantor alloys. </p> <p> </p> <p>Stacking fault energy engineering can enable novel deformation mechanisms and exceptional strength in face-centered cubic (FCC) materials such as austenitic TRIP/TWIP steels and CoNi-based superalloys exhibiting local phase transformation strengthening via Suzuki segregation. We employed first-principles calculations to investigate the Suzuki segregation and stacking fault energy of the FCC Co-Ni binary alloys at finite temperatures and concentrations. We quantitatively predicted the Co segregation in the innermost plane of the intrinsic stacking fault (ISF). We further quantified the decrease of stacking fault energy due to segregation.  </p> <p><br></p> <p>We further investigated the driving force of segregation and the origin of the segregation behaviors of 3d, 4d and 5d elements in the Co- and Ni-alloys. Using first-principles calculations, we calculated the ground-state solute-ISF interaction energies and revealed the trends across the periodic table. We discussed the relationships between the interaction energies and the local lattice distortions, charge density redistribution, density of states and local magnetization of the solutes. </p> <p><br></p> <p>Finally, this thesis reports on new methodologies to accelerate first-principles calculations utilizing active learning techniques, such as Bayesian optimization, to efficiently search for the ground-state energy line of the system with limited computational resources. Based on the expected improvement method, new acquisition strategies were developed and will be compared and presented. </p>
632

Remediation Trends in an Undergraduate Anatomy Course and Assessment of an Anatomy Supplemental Study Skills Course

Schutte, Audra Faye 15 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Anatomy A215: Basic Human Anatomy (Anat A215) is an undergraduate human anatomy course at Indiana University Bloomington (IUB) that serves as a requirement for many degree programs at IUB. The difficulty of the course, coupled with pressure to achieve grades for admittance into specific programs, has resulted in high remediation rates. In an attempt to help students to improve their study habits and metacognitive skills Medical Sciences M100: Improving Learning Skills in Anatomy (MSCI M100) was developed. MSCI M100 is an undergraduate course at IUB which is taught concurrently with Anat A215, with the hopes of promoting academic success in Anat A215. This multifaceted study was designed to analyze the factors associated with students who remediate Anat A215, to predict at-risk students in future semesters, and assess the effectiveness of MSCI M100. The first facet involved analysis of Anat A215 students’ demographic information and class performance data from the spring semester of 2004 through the spring semester of 2010. Results of data analysis can be used by IUB instructors and academic advisors to identify students at risk for remediating, as well as provide other undergraduate anatomy instructors across the U.S. with potential risk factors associated with remediation. The second facet of this research involved analyzing MSCI M100 course assignments to determine if there are improvements in student study habits and metacognitive skills. This investigation involved quantitative analysis of study logs and a learning attitudes survey, as well as a thorough inductive analysis of students’ weekly journal entries. Lastly, Anat A215 exam scores and final course grades for students who completed MSCI M100 and students who did not complete MSCI M100 were compared. Results from these analyses show promising improvements in students’ metacognition and study habits, but further research will better demonstrate the efficacy of MSCI M100.
633

A Bayesian Decision Theoretical Approach to Supervised Learning, Selective Sampling, and Empirical Function Optimization

Carroll, James Lamond 10 March 2010 (has links) (PDF)
Many have used the principles of statistics and Bayesian decision theory to model specific learning problems. It is less common to see models of the processes of learning in general. One exception is the model of the supervised learning process known as the "Extended Bayesian Formalism" or EBF. This model is descriptive, in that it can describe and compare learning algorithms. Thus the EBF is capable of modeling both effective and ineffective learning algorithms. We extend the EBF to model un-supervised learning, semi-supervised learning, supervised learning, and empirical function optimization. We also generalize the utility model of the EBF to deal with non-deterministic outcomes, and with utility functions other than 0-1 loss. Finally, we modify the EBF to create a "prescriptive" learning model, meaning that, instead of describing existing algorithms, our model defines how learning should optimally take place. We call the resulting model the Unified Bayesian Decision Theoretical Model, or the UBDTM. WE show that this model can serve as a cohesive theory and framework in which a broad range of questions can be analyzed and studied. Such a broadly applicable unified theoretical framework is one of the major missing ingredients of machine learning theory. Using the UBDTM, we concentrate on supervised learning and empirical function optimization. We then use the UBDTM to reanalyze many important theoretical issues in Machine Learning, including No-Free-Lunch, utility implications, and active learning. We also point forward to future directions for using the UBDTM to model learnability, sample complexity, and ensembles. We also provide practical applications of the UBDTM by using the model to train a Bayesian variation to the CMAC supervised learner in closed form, to perform a practical empirical function optimization task, and as part of the guiding principles behind an ongoing project to create an electronic and print corpus of tagged ancient Syriac texts using active learning.
634

Implementing inquiry-based learning to enhance Grade 11 students' problem-solving skills in Euclidean Geometry

Masilo, Motshidisi Marleen 02 1900 (has links)
Researchers conceptually recommend inquiry-based learning as a necessary means to alleviate the problems of learning but this study has embarked on practical implementation of inquiry-based facilitation and learning in Euclidean Geometry. Inquiry-based learning is student-centred. Therefore, the teaching or monitoring of inquiry-based learning in this study is referred to as inquiry-based facilitation. The null hypothesis discarded in this study explains that there is no difference between inquiry-based facilitation and traditional axiomatic approach in teaching Euclidean Geometry, that is, H0: μinquiry-based facilitation = μtraditional axiomatic approach. This study emphasises a pragmatist view that constructivism is fundamental to realism, that is, inductive inquiry supplements deductive inquiry in teaching and learning. Participants in this study comprise schools in Tshwane North district that served as experimental group and Tshwane West district schools classified as comparison group. The two districts are in the Gauteng Province of South Africa. The total number of students who participated is 166, that is, 97 students in the experimental group and 69 students in the comparison group. Convenient sampling applied and three experimental and three comparison group schools were sampled. Embedded mixed-method methodology was employed. Quantitative and qualitative methodologies are integrated in collecting data; analysis and interpretation of data. Inquiry-based-facilitation occurred in experimental group when the facilitator probed asking students to research, weigh evidence, explore, share discoveries, allow students to display authentic knowledge and skills and guiding students to apply knowledge and skills to solve problems for the classroom and for the world out of the classroom. In response to inquiry-based facilitation, students engaged in cooperative learning, exploration, self-centred and self-regulated learning in order to acquire knowledge and skills. In the comparison group, teaching progressed as usual. Quantitative data revealed that on average, participant that received intervention through inquiry-based facilitation acquired inquiry-based learning skills and improved (M= -7.773, SE= 0.7146) than those who did not receive intervention (M= -0.221, SE = 0.4429). This difference (-7.547), 95% CI (-8.08, 5.69), was significant at t (10.88), p = 0.0001, p<0.05 and represented a large effect size of 0.55. The large effect size emphasises that inquiry-based facilitation contributed significantly towards improvement in inquiry-based learning and that the framework contributed by this study can be considered as a framework of inquiry-based facilitation in Euclidean Geometry. This study has shown that the traditional axiomatic approach promotes rote learning; passive, deductive and algorithmic learning that obstructs application of knowledge in problem-solving. Therefore, this study asserts that the application of Inquiry-based facilitation to implement inquiry-based learning promotes deeper, authentic, non-algorithmic, self-regulated learning that enhances problem-solving skills in Euclidean Geometry. / Mathematics Education / Ph. D. (Mathematics, Science and Technology Education)

Page generated in 0.0532 seconds