Spelling suggestions: "subject:"activeset algorithms""
1 |
Elimination dynamique : accélération des algorithmes d'optimisation convexe pour les régressions parcimonieuses / Dynamic screening : accelerating convex optimization algorithms for sparse regressionsBonnefoy, Antoine 15 April 2016 (has links)
Les algorithmes convexes de résolution pour les régressions linéaires parcimonieuses possèdent de bonnes performances pratiques et théoriques. Cependant, ils souffrent tous des dimensions du problème qui dictent la complexité de chacune de leur itération. Nous proposons une approche pour réduire ce coût calculatoire au niveau de l'itération. Des stratégies récentes s'appuyant sur des tests d'élimination de variables ont été proposées pour accélérer la résolution des problèmes de régressions parcimonieuse pénalisées tels que le LASSO. Ces approches reposent sur l'idée qu'il est profitable de dédier un petit effort de calcul pour localiser des atomes inactifs afin de les retirer du dictionnaire dans une étape de prétraitement. L'algorithme de résolution utilisant le dictionnaire ainsi réduit convergera alors plus rapidement vers la solution du problème initial. Nous pensons qu'il existe un moyen plus efficace pour réduire le dictionnaire et donc obtenir une meilleure accélération : à l'intérieur de chaque itération de l'algorithme, il est possible de valoriser les calculs originalement dédiés à l'algorithme pour obtenir à moindre coût un nouveau test d'élimination dont l'effet d'élimination augmente progressivement le long des itérations. Le dictionnaire est alors réduit de façon dynamique au lieu d'être réduit de façon statique, une fois pour toutes, avant la première itération. Nous formalisons ce principe d'élimination dynamique à travers une formulation algorithmique générique, et l'appliquons en intégrant des tests d'élimination existants, à l'intérieur de plusieurs algorithmes du premier ordre pour résoudre les problèmes du LASSO et Group-LASSO. / Applications in signal processing and machine learning make frequent use of sparse regressions. Resulting convex problems, such as the LASSO, can be efficiently solved thanks to first-order algorithms, which are general, and have good convergence properties. However those algorithms suffer from the dimension of the problem, which impose the complexity of their iterations. In this thesis we study approaches, based on screening tests, aimed at reducing the computational cost at the iteration level. Such approaches build upon the idea that it is worth dedicating some small computational effort to locate inactive atoms and remove them from the dictionary in a preprocessing stage so that the regression algorithm working with a smaller dictionary will then converge faster to the solution of the initial problem. We believe that there is an even more efficient way to screen the dictionary and obtain a greater acceleration: inside each iteration of the regression algorithm, one may take advantage of the algorithm computations to obtain a new screening test for free with increasing screening effects along the iterations. The dictionary is henceforth dynamically screened instead of being screened statically, once and for all, before the first iteration. Our first contribution is the formalisation of this principle and its application to first-order algorithms, for the resolution of the LASSO and Group-LASSO. In a second contribution, this general principle is combined to active-set methods, whose goal is also to accelerate the resolution of sparse regressions. Applying the two complementary methods on first-order algorithms, leads to great acceleration performances.
|
2 |
Algorithmes gloutons orthogonaux sous contrainte de positivité / Orthogonal greedy algorithms for non-negative sparse reconstructionNguyen, Thi Thanh 18 November 2019 (has links)
De nombreux domaines applicatifs conduisent à résoudre des problèmes inverses où le signal ou l'image à reconstruire est à la fois parcimonieux et positif. Si la structure de certains algorithmes de reconstruction parcimonieuse s'adapte directement pour traiter les contraintes de positivité, il n'en va pas de même des algorithmes gloutons orthogonaux comme OMP et OLS. Leur extension positive pose des problèmes d'implémentation car les sous-problèmes de moindres carrés positifs à résoudre ne possèdent pas de solution explicite. Dans la littérature, les algorithmes gloutons positifs (NNOG, pour “Non-Negative Orthogonal Greedy algorithms”) sont souvent considérés comme lents, et les implémentations récemment proposées exploitent des schémas récursifs approchés pour compenser cette lenteur. Dans ce manuscrit, les algorithmes NNOG sont vus comme des heuristiques pour résoudre le problème de minimisation L0 sous contrainte de positivité. La première contribution est de montrer que ce problème est NP-difficile. Deuxièmement, nous dressons un panorama unifié des algorithmes NNOG et proposons une implémentation exacte et rapide basée sur la méthode des contraintes actives avec démarrage à chaud pour résoudre les sous-problèmes de moindres carrés positifs. Cette implémentation réduit considérablement le coût des algorithmes NNOG et s'avère avantageuse par rapport aux schémas approximatifs existants. La troisième contribution consiste en une analyse de reconstruction exacte en K étapes du support d'une représentation K-parcimonieuse par les algorithmes NNOG lorsque la cohérence mutuelle du dictionnaire est inférieure à 1/(2K-1). C'est la première analyse de ce type. / Non-negative sparse approximation arises in many applications fields such as biomedical engineering, fluid mechanics, astrophysics, and remote sensing. Some classical sparse algorithms can be straightforwardly adapted to deal with non-negativity constraints. On the contrary, the non-negative extension of orthogonal greedy algorithms is a challenging issue since the unconstrained least square subproblems are replaced by non-negative least squares subproblems which do not have closed-form solutions. In the literature, non-negative orthogonal greedy (NNOG) algorithms are often considered to be slow. Moreover, some recent works exploit approximate schemes to derive efficient recursive implementations. In this thesis, NNOG algorithms are introduced as heuristic solvers dedicated to L0 minimization under non-negativity constraints. It is first shown that the latter L0 minimization problem is NP-hard. The second contribution is to propose a unified framework on NNOG algorithms together with an exact and fast implementation, where the non-negative least-square subproblems are solved using the active-set algorithm with warm start initialisation. The proposed implementation significantly reduces the cost of NNOG algorithms and appears to be more advantageous than existing approximate schemes. The third contribution consists of a unified K-step exact support recovery analysis of NNOG algorithms when the mutual coherence of the dictionary is lower than 1/(2K-1). This is the first analysis of this kind.
|
Page generated in 0.0434 seconds