• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle quantique adiabatique : technique de passage adiabatique parallèle et systèmes dissipatifs / Adiabatic quantum control : parallel adiabatic passage technique and dissipative systems

Dridi, Ghassen 16 December 2011 (has links)
La première partie de cette thèse est consacrée à l'élaboration théorique de processus adiabatiques permettant le transfert de population entre un état initial et un état cible d'un système quantique. La stratégie du passage adiabatique parallèle pour laquelle les paramètres de couplage sont conçus de telle sorte que la différence des valeurs propres du système reste constante à chaque instant, permet de minimiser à zéro les transitions non-adiabatiques données par la formule DDP. Cette technique permet de combiner à la fois l'efficacité énergétique des méthodes impulsion-pi et la robustesse du passage adiabatique. La seconde partie de cette thèse concerne les effets de la dissipation sur le passage adiabatique. La formule de probabilité de transition d'un système à deux niveaux tenant compte des effets de la dissipation est établie. Cette formule permet de reformuler la solution générale d'un système dissipatif à deux niveaux dans la limite adiabatique qui est valable au-delà du régime de faible dissipation. / The first part of this thesis is devoted to the theoretical analysis of adiabatic processes allowing the transfer of population from an initial state to a target state of a quantum system. The strategy of parallel adiabatic passage, in which the coupling parameters are specifically designed to optimize the adiabatic passage corresponding to parallel eigenvalues at all times, allows one to combine the energetically efficiency of pi-pulse and related strategies with the robustness of standard adiabaticpassage. The second part of this thesis concerns the effects of the dissipation in adiabatic passage. The non-adiabatic transition probability formula of a two state system with dissipation is established. This formula allows on in particular to derive the general solution of a dissipative two-level system in the adiabatic limit which is valid beyond weak dissipation regimes.
2

Ensemble based quantum memory and adiabatic phase gates in electron spins

Wu, Hua January 2011 (has links)
Quantum computing has been a new and challenging area of research since the concept was put forward in 1980s. A quantum computer is a computer that processes information encoded in systems that exhibit quantum properties and is proved in theory to be more powerful than classical computers. Various approaches to the implementation of the quantum computers have been studied over the decades, each of them having their own advantages and disadvantages in terms of the lifetime of the quantum information, processing time, and scalability of the implementation. Proposals for hybrid quantum processors are interesting because they benefit from the advantages of each comprising system, and thus providing a promising approach to a practical quantum computer. In this thesis, I demonstrate experimentally the principle of utilizing electron spin ensembles as a quantum memory for hybrid quantum processors. I demonstrate the storage and on-demand retrieval of multiple bits of quantum information into and from a single electron spin ensemble by applying magnetic field gradient pulses. I then study the coupling between an electron spin ensemble and a three-dimensional microwave cavity, in the aim of discussing the condition for the coherent information transfer between the excitations in solid-state matter and photons. As an alternative to the high power pulses in electron paramagnetic resonance (EPR), I study the possibility of controlling the electron spin states via adiabatic processes. I demonstrate the implementation of adiabatic geometric phase gates in electron spins and compare their performances to other phase gates achieved with microwave pulses in both simulation and experiment, verifying the robustness of the adiabatic gates against certain type of noises. Finally I present the simulation method developed for simulating the pulsed EPR experiments in this thesis, using a model more general than some currently-existing simulation packages.
3

Ultracold Ytterbium Atoms in a Tunable Non-Primitive Optical Lattice / 高い制御性をもつ非標準型光格子中の極低温イッテルビウム原子

Ozawa, Hideki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20892号 / 理博第4344号 / 新制||理||1624(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 高橋 義朗, 教授 川上 則雄, 教授 田中 耕一郎 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
4

Exceptional points and adiabatic evolution in optical coupled mode systems

Yang, Guang 30 August 2023 (has links)
Quantum and classical frameworks form two perspectives for describing physical systems. Their formulation also presents interesting isomorphism: for example, the Schrodinger equation can find its classical correspondence in the paraxial Helmholtz equation, and coherent atomic population transfers is analogous to coupling dynamics in waveguides. In classical coupled mode systems, quantum notion can be manifested in the following ways: (1) adiabatic (i.e., sufficiently slow) evolution of the Hamiltonian enables robust mode conversion and light transfer, where the dynamics is carried out in predominantly one eigenmode; (2) non-Hermitian Hamiltonians give rise to peculiar singularities known as exceptional points (EPs), associated with not only degenerate eigenvalues but coalescent eigenvectors. In this dissertation, we explore the above principles in light manipulation, sensing, and photonic emulation. First, we numerically demonstrate two examples of photonic devices based on adiabatic evolution engineering. We present a coupled waveguide system analogous to the atomic physics process of stimulated Raman adiabatic passage, where the principle of adiabaticity not only allows high-extinction polarization mode splitting, but also counterintuitively mitigates the losses from the plasmonic structure involved. We show a modal hybridization effect in rib waveguide geometry that allows the mode to adiabatically evolve from one polarization to its orthogonal state upon electro-optic modulation in thin film lithium niobate, enabling an actively switchable polarization converter. We propose a generic EP emulator based on programmable photonics to tackle the challenging implementation of EP. Our approach combines on-chip operations of coupling, loss and detuning based on generic photonic modules (Mach-Zehnder interferometers), and a discrete scheme for mapping Hamiltonians to common mesh architecture. We demonstrate multiple exemplary EP functionalities, including loss-induced transparency, encircling second-order EPs in the PT and anti-PT symmetry picture, and a third-order EP. The proposed EP emulator marks a new paradigm for discrete, \textit{in situ} programming of EPs and multi-functional, repurposable EP devices. We also present our preliminary work on NV center-induced EPs. In contrast to conventional fluorescence-based schemes for addressing NV centers, we leverage NV centers' absorption to bring a coupled ring resonator system to an EP and numerically demonstrate the emerging dynamics. Our primary numerical results promise proof-of-concept magnetometry, combining NV centers' response to magnetic and microwave fields with the sensitivity enhancing nature of EP. This dissertation sheds light on unconventional photonics inspired by quantum-like principles. / 2025-08-29T00:00:00Z
5

Measurements of the time evolution of coherent excitation

Camp, Howard Alan January 1900 (has links)
Doctor of Philosophy / Department of Physics / B.D. DePaola / In recent years, coherent excitation techniques have focused on the ability to efficiently prepare atomic or molecular systems into a selected state. Such population control plays a key role in cutting-edge research taking place today, such as in the areas of quantum information and laser-controlled chemical reactions. Stimulated Raman adiabatic passage (STIRAP) is a widely-used coherent excitation technique that provides a relatively robust control mechanism for efficiently exciting a target population into a desired state. While the technique is well proven, current experimental techniques yield little information on the population dynamics taking place throughout the excitation process, and experimentalists rely solely on final excited-state measurements to determine the efficiency of population transfer. This dissertation presents a unique diagnostic tool to measure multilevel coherent population transfer on a short (nanosecond) timescale. The technique described here uses magneto-optical trap recoil ion momentum spectroscopy (MOTRIMS) as a noninvasive probe of a coherently-controlled system. It provides extremely detailed information about the excitation process, and highlights some important characteristics seen in excited populations that would otherwise be misleading or completely overlooked if one were to use more traditional diagnostic techniques. This dissertation discusses both the theoretical and experimental results applied to three-level coherently excited target populations of Rb-87.
6

Ralentir le déphasage des états de superposition atomiques dans un cristal de Tm3+ : YAG / Slow down dephasing of atomic superposition states in a Tm3+ : YAG crystal

Tongning, Robert-christopher 03 March 2014 (has links)
Ce travail se place dans le contexte des recherches sur les mémoires quantiques pour la lumière. L’information quantique est stockée dans un état de superposition atomique, dont la durée de vie détermine le temps maximum de stockage.On s’intéresse particulièrement aux matériaux capables de capturer la lumière par excitation résonnante d’une raie d’absorption, puis de conserver l’information quantique dans un état de superposition du fondamental électronique.Dans Tm3+:YAG, l’information est enregistrée dans un état de spin nucléaire. Cependant le champ magnétique qui lève la dégénérescence nucléaire entraîne les différents spins à des vitesses de précession différentes, ce qui tend à détruire l’aimantation initiale, porteuse de l’information.Une étude quantique du cristal est réalisée lors du premier chapitre de ce manuscrit. Les trois chapitres suivants traitent des différents mécanismes conduisant au déphasage des spins nucléaires. On y trouvera différente analyses théoriques qui seront confirmées par un ensemble de résultats expérimentaux, ainsi qu’une description détaillée du dispositif expérimental. Enfin le dernier chapitre, prospectif, exploite les outils développés au cours de la thèse pour préserver les cohérences optiques. Il présente quelques résultats expérimentaux prometteurs sur l’allongement du temps de vie de ces cohérences optiques. / This work takes place in the context of research about quantum memories for light. The quantum information is stored in an atomic superposition state whose lifetime sets the maximum storage time. We are particularly interested in materials which are able to hold the light by resonant excitation of an absorption line, preserving the quantum information in a superposition state of the electronicfundamental.n Tm3+:YAG the information is stored in a nuclear spin state. However, the magnetic field which lifts the nuclear degeneracy generates different precession speeds of the spins. This destroys theinitial magnetization carrier of the information.In the first chapter of this thesis, a quantum analysis of the crystal is done. The following three chapters are devoted to different mechanisms to control the nuclear spins dephasing. There it ispossible to find different theoretical analysis which will be confirmed by a series of experimental measurements, including an extended description of the set-up. Finally, the last chapter presentsthe different techniques used to preserve the optical coherence. Promising experimental measurements are presented to extend the life time of the optical coherences.

Page generated in 0.0643 seconds