• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 103
  • 96
  • 34
  • 8
  • 7
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 305
  • 84
  • 64
  • 56
  • 44
  • 35
  • 34
  • 30
  • 28
  • 23
  • 23
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Oncologic benefit of adjuvant chemotherapy for locally advanced rectal cancer after neoadjuvant chemoradiotherapy and curative surgery with selective lateral pelvic lymph node dissection: An international retrospective cohort study / 術前化学放射線療法・選択的側方リンパ節郭清を伴う根治的切除を施行した局所進行直腸癌における術後補助化学療法の腫瘍学的有用性:国際共同後ろ向きコホート研究

Fukui, Yudai 24 July 2023 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24831号 / 医博第4999号 / 新制||医||1067(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 山本, 洋介, 教授 武藤, 学, 教授 永井, 純正 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
152

Adjuvant Guided T cell Responses

Tigno-Aranjuez, Justine Daphne Tiglao 07 October 2009 (has links)
No description available.
153

DEVELOPMENT OF A NOVEL COMBINED EXPERIMENTAL AND MODELING APPROACH TO CHARACTERIZE IN SITU FORMING IMPLANTS FOR INTRATUMORAL DRUG DELIVERY

Patel, Ravi 19 September 2011 (has links)
No description available.
154

Genomic Effects of Hormonal Adjuvant Therapies that Could Support the Emergence of Drug Resistance in Breast Cancer

Salazar, Marcela d'Alincourt 23 August 2010 (has links)
No description available.
155

Outcomes associated with adjuvant hormonal therapy: are they any differences between black and white women with primary breast cancer?

Bhosle, Monali Jaysing 19 September 2007 (has links)
No description available.
156

Synthesis and Development of Antibiotic Adjuvants to Restore Antimicrobial Activity Against Resistant Gram-Negative Pathogens / Antibiotic Adjuvants for Resistant Gram-Negative Pathogens

Colden Leung, Madelaine 18 October 2019 (has links)
Widespread antimicrobial resistance, particularly in Gram-negative pathogens, is a serious threat facing the global community. Aminoglycosides are inactivated by enzymes such as aminoglycoside N-acetyltransferase-3 (AAC(3)) and O-nucleotidyltransferase-2” (ANT(2”)), while the New Delhi metallo-b- lactamase-1 (NDM-1) degrades carbapenems. Inhibition of these enzymes should result in bacteria becoming once again susceptible to aminoglycosides and carbapenems. This thesis describes the development of inhibitors to these enzymes, in an effort to rescue the utility of aminoglycoside and carbapenem drug classes through adjuvant therapy. High-throughput screening of protein kinase libraries identified two AAC(3)-Ia inhibitors with a common 3-benzylidene-2-indolinone core. New methods for purification of AAC(3)-Ia and monitoring its activity were developed. A chemical library was built around this scaffold and assessed for SAR. It was found that the initial hit (Z)-methyl 3-(3,5-dibromo-4-hydroxybenzylidene)-2- oxoindoline-5-carboxylate was the most active against AAC(3)-Ia, and alterations to either the 3,5-dibromo-4-hydroxybenzyl warhead or methyl ester substituent resulted in a decrease in activity. Previous whole-cell screening had identified two protein kinase inhibitors with a biphenyl isonicotinamide scaffold as inhibitors of ANT(2”)-Ia. A convergent parallel synthesis was developed, involving Suzuki and amide couplings and protecting group strategies. This methodology was used to assemble a focused chemical library for SAR analysis. Stepwise removal of extraneous complexity from the initial hits yielded a selective ANT(2”)-Ia inhibitor which demonstrated in vivo synergy with gentamicin. Aspergillomarasmine A (AMA) is a natural product with activity against NDM-1. Several derivatives of AMA have been synthesized to assess SAR, but the specific contributions of individual carboxylic acids have yet to determined due to difficulties accessing position 6. A synthetic approach was developed via reductive amination using Garner’s aldehyde as a serine equivalent. This strategy was used to synthesize an AMA analog with a hydroxyl group in place of the carboxylic acid in position 6. Additionally, an imine-promoted isomeric resolution was discovered. / Thesis / Doctor of Philosophy (PhD) / Antibiotics, such as aminoglycosides and carbapenems, are losing their effectiveness against bacteria responsible for deadly diseases. This is often due to resistance enzymes such as aminoglycoside N-acetyltransferase-3 (AAC(3)) and O- nucleotidyltransferase-2” (ANT(2”)), which inactivate aminoglycosides, and the New Delhi metallo-b-lactamase-1 (NDM-1), which destroys carbapenems. If these enzymes are blocked, the antibiotics should work against bacteria again. In order to develop compounds that will inhibit these enzymes, sets of similar compounds are made and tested. Patterns of what chemical groups improve or worsen inhibitory activity are noted and used to make another set of compounds in an iterative process. This thesis describes the development of inhibitors of AAC(3)-Ia and ANT(2”)-Ia by this process. Additionally, a specific compound was made to test if a particular chemical group has a role in inhibiting NDM-1.
157

Characterization of Organosilicone Surfactants and Their Effects on Sulfonylurea Herbicide Activity

Sun, Jinxia 05 April 1996 (has links)
This research focused on the characterization of organosilicone surfactants and their effects on sulfonylurea herbicide activity. The project included efficacy tests, rainfastness studies in the greenhouse, radiotracer studies on herbicide uptake, fluorescent dye studies on surface deposition, and various measurements of physico-chemical properties. In measuring physico-chemical properties, a logistic dose response relationship was found between adjuvant concentration and contact angle on parafilm. An AsymSigR relationship existed between adjuvant concentration and surface tension for all the adjuvants. The organosilicones, Silwet L-77, Silwet 408, and Sylgard 309, and Kinetic (a blend of an organosilicone with a nonionic surfactant) gave equilibrium surface tension values around 20 dyne/cm and showed great spreading ability on the foliage of velvetleaf. With the conventional adjuvants, Agri-Dex, methylated soybean oil, Rigo oil concentration, and X-77, and Dyne-Amic (a blend of an organosilicone with a crop oil concentrate), surface tension was rarely below 28 dyne/cm and spreading ability was limited on velvetleaf. In addition, the organosilicone surfactant and Kinetic also lowered dynamic surface tension, which may improve droplet retention on leaf surfaces. The differences in physico-chemical properties between Kinetic and Dyne-Amic confirmed that carefully electing a co-adjuvant for an organosilicone blend is critical to avoid antagonism with trisiloxane molecules and retain the unique physico-chemical properties of organosilicone in the blends. Studies involving structurally-related organosilicones showed that the end structure in the trisiloxane hydrophilic group has little or no effect on surface tension, contact angle, spread pattern, herbicide uptake and translocation, and efficacy of primisulfuron on velvetleaf. It may be suggested that there is not a strict requirement to purify the end structure during the synthesis process, which is time consuming and expensive. When 14C-primisulfuron was combined with organosilicones or the blends, the uptake of 14C at 1 or 2 h after herbicide application was significantly higher than when combined with conventional adjuvants in velvetleaf. In the greenhouse, organosilicone surfactants greatly increased the rainfastness of primisulfuron in velvetleaf. The effect was immediate and dramatic, even when simulated rainfall was applied 0.25 h after treatment. In addition, herbicide efficacy on marginally susceptible weed species, velvetleaf and barnyardgrass, was significantly increased. A very complicated relationship exists between herbicides and adjuvants. The enhancement effects of adjuvants are often herbicide specific, weed species specific, and even environment specific. No one type of adjuvant functions well in all circumstances. Therefore, there is a need to understand the properties and functions of each class of adjuvants and locate the 'right' niche for each individual adjuvant. / Ph. D.
158

Plant-derived Murine IL-12 and Ricin B-Murine IL-12 Fusions

Liu, Jianyun 26 January 2007 (has links)
Interleukin-12 (IL-12), an important immuno-modulator for cell-mediated immunity, shows significant potential as a vaccine adjuvant and anti-cancer therapeutic. However, its clinical application is limited by lack of an effective bioproduction system and by toxicity associated with systemic administration of IL-12. The goals of this research were to determine whether plants can serve as an effective production system for bioactive IL-12, a complex 70kDa glycoprotein cytokine, and whether the plant lectin RTB can facilitate mucosal delivery of IL-12 to immune responsive sites. Transgenic tobacco plants expressing murine IL-12 were generated and characterized. To ensure stochiometric expression of the two separately encoded, disulfide-linked subunits of IL-12 (p35 and p40), a single-chain form of mouse IL-12 (mIL-12) was utilized. Hairy root cultures, as a fast-growing bioproduction system were developed from high expressers of mIL-12. A purification scheme was developed to purify plant-derived mIL-12 from hairy roots and purified mIL-12 was used to assess IL-12 bioactivity in vitro in mouse splenocytes and in vivo in mouse intranasal vaccination trials. Plant-derived mIL-12 triggered induction of interferon-gamma secretion from mouse splenocytes as well as stimulation of cell proliferation with comparable activities to those observed for the animal-cell-derived mIL-12. Mouse vaccination trials using GFP as the antigen and CT as the adjuvant suggested that plant-derived mIL-12 enhanced Th1 immunity and exhibited similar activity to animal-cell-derived mIL-12 in vivo. Plant-derived IL-12 itself was non-immunogenic suggesting conformational equivalency to endogenous mouse IL-12. Ricin B (RTB), the non-toxic carbohydrate-binding subunit of ricin, directs uptake of ricin into mammalian cells and the intracellular trafficking of ricin A, the catalytic subunit of ricin. RTB's function suggests that it may work as a molecular carrier for effective mucosal delivery of IL-12. To prove this hypothesis, transgenic plants producing RTB:IL-12 fusions were generated and characterized. Our results demonstrated that RTB fused to the carboxyl-terminus of IL-12 maintained full lectin activity and IL-12 bioactivity. RTB fused to the amino-terminus of IL-12 did not show lectin activity due to steric hinderance. Purified IL-12:RTB from transgenic plant tissue was tested in an in vitro mucosal-associated lymphoid tissue (MALT) assay. The results indicate that RTB facilitates the binding of IL-12 to the epithelial cells and presentation of IL-12 to immune responsive cells. In conclusion, my research has shown that transgenic plants are capable of producing valuable bioactive proteins, such as IL-12. Plant-derived mIL-12 exhibited similar activity to animal-cell-derived mIL-12 both in vitro and in vivo. Fusion of IL-12 with the RTB lectin facilitates the delivery of IL-12 to mucosal immune responsive cells and thus may serve as a molecular carrier to enhance IL-12 efficacy and reduce the side-effects associated with systemic administration of IL-12. / Ph. D.
159

Combinaisons séquentielles des traitements pharmacologique et cognitivo-comportemental pour l'insomnie chronique

Vallières, Annie 15 April 2021 (has links)
No description available.
160

Brucella abortus Strain RB51 Outer Membrane Vesicles as a Vaccine Against Brucellosis in a Murine Model

Cassidy, Clifton Clark 23 July 2010 (has links)
Brucella abortus is a zoonotic agent that primarily infects cattle and causes brucellosis. B. abortus strain RB51 is a live, attenuated vaccine licensed for cattle. However, there is no available vaccine to prevent human brucellosis. Outer membrane vesicles have been tested as potential vaccines to prevent diseases caused by bacterial species. OMV are constantly released from Gram-negative bacteria. They are comprised principally of the outer membrane components and periplasmic proteins from the bacterial cell envelope. The research in this thesis examined the adjuvant property of non-replicative, metabolically active irradiated strain RB51 and the protective ability of OMV derived from strain RB51. Irradiated B. abortus strain RB51 was assessed for its ability to act as an adjuvant to induce protection against malaria. It was found that irradiated B. abortus strain RB51 administered along with fasciclin related adhesive protein (FRAP) to mice induced a protective immune response and a significant decrease in parasitemia after challenge with Plasmodium berghei. Strain RB51 and strain RB51 over-producing Cu/Zn superoxide dismutase (Cu/Zn SOD) were used to produce OMV. Western blotting and SDS-PAGE gel staining confirmed the presence of OMV and the over-production of Cu/Zn SOD. OMV were delivered to mice using an intraperitoneal route and, in some cases, with aluminum hydroxide adjuvant. The immune response was assessed by antibody isotyping with respect to OMV and measuring splenic clearance (i.e. protection) from a B. abortus strain 2308 challenge. The results demonstrate that OMV from B. abortus strain RB51 or strain RB51 over producing Cu/Zn SOD produced a Th1 polarized immune response as measured by specific OMV antibodies and cytokines but no statistically significant protection was observed. / Master of Science

Page generated in 0.1228 seconds