• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 43
  • 10
  • 7
  • 6
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 99
  • 26
  • 26
  • 18
  • 18
  • 14
  • 14
  • 11
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The 2014–2017 outburst of the young star ASASSN-13db

Sicilia-Aguilar, A., Oprandi, A., Froebrich, D., Fang, M., Prieto, J. L., Stanek, K., Scholz, A., Kochanek, C. S., Henning, Th., Gredel, R., Holoien, T. W.- S., Rabus, M., Shappee, B. J., Billington, S. J., Campbell-White, J., Zegmott, T. J. 24 November 2017 (has links)
Context. Accretion outbursts are key elements in star formation. ASASSN-13db is a M5-type star with a protoplanetary disk, the lowest-mass star known to experience accretion outbursts. Since its discovery in 2013, it has experienced two outbursts, the second of which started in November 2014 and lasted until February 2017. Aims. We explore the photometric and spectroscopic behavior of ASASSN-13db during the 2014-2017 outburst. Methods. We use high- and low-resolution spectroscopy and time-resolved photometry from the ASAS-SN survey, the LCOGT and the Beacon Observatory to study the light curve of ASASSN-13db and the dynamical and physical properties of the accretion flow. Results. The 2014-2017 outburst lasted for nearly 800 days. A 4.15 d period in the light curve likely corresponds to rotational modulation of a star with hot spot(s). The spectra show multiple emission lines with variable inverse P-Cygni profiles and a highly variable blue-shifted absorption below the continuum. Line ratios from metallic emission lines (Fe I/Fe II, Ti I/Ti II) suggest temperatures of similar to 5800-6000 K in the accretion flow. Conclusions. Photometrically and spectroscopically, the 2014-2017 event displays an intermediate behavior between EXors and FUors. The accretion rate (<(M)over dot> = 1-3 x 10(-7) M-circle dot/yr), about two orders of magnitude higher than the accretion rate in quiescence, is not significantly different from the accretion rate observed in 2013. The absorption features in the spectra suggest that the system is viewed at a high angle and drives a powerful, non-axisymmetric wind, maybe related to magnetic reconnection. The properties of ASASSN-13db suggest that temperatures lower than those for solar-type stars are needed for modeling accretion in very-low-mass systems. Finally, the rotational modulation during the outburst reveals that accretion-related structures settle after the beginning of the outburst and can be relatively stable and long-lived. Our work also demonstrates the power of time-resolved photometry and spectroscopy to explore the properties of variable and outbursting stars.
82

Studies On Characterization Of Self Compacting Concrete : Microstructure, Fracture And Fatigue

Hemalatha, T 10 1900 (has links) (PDF)
Evolution of concrete is continuously taking place to meet the ever-growing demands of the construction industry. Self compacting concrete (SCC) has emerged as a result of this demand to overcome the scarcity of labour. SCC is widely replacing normal vibrated concrete (NVC) these days owing to its advantages such as homogeneity of the mix, filling ability even in heavily congested reinforcement, smooth finish, reduction in construction time etc. The ingredients used for SCC is the same as that of the NVC. But the proportioning of ingredients to achieve self compactability alters the microstructure of SCC which in turn affects the mechanical and fracture properties. Moreover, the mineral admixtures such as fly ash and silica fume when used for improving the workability of SCC help in the development of the microstructural skeleton. In this study, three SCC mixes SCC1- made with only cement, SCC2 - with fly ash in addition to cement and SCC3 - with fly ash and silica fume in addition to cement for achieving normal, medium and high strength SCC respectively are cast. The microstructural changes in SCC with and without mineral admixtures over a period of time are studied using different techniques such as scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The modification of mechanical properties at microstructural level brings difference in the behavior at macro level. Hence in this study, the mechanical properties at microstructural are obtained by using microindentation test and are scaled up to the macro level to predict the influence of micromechanical properties on macro response. The fracture properties of SCC is considered to be the interest of this study and is carried out with the help of advanced techniques such as acoustic emission (AE) and digital image correlation (DIC). From the various studies carried out, it is inferred that the mixes with mineral admixtures behave in a more brittle manner when compared to mix having no mineral admixture. It is also observed that class ‘F’ fly ash hydrates at a slow pace and the strength gain is observed after 28 days and even beyond 90 days. Hence, it is concluded that it is appropriate to consider the strength at 90 days instead of 28 days for a SCC mix with class ‘F’ fly ash. Silica fume on the other hand is observed to result in a more rapid gain in strength and this can partially offset the delay in strength gain due to fly ash.
83

鋼板接着補強RC床版の弾性波法による劣化評価手法と合理的維持管理フローへの活用

茅野, 茂 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23486号 / 工博第4898号 / 新制||工||1765(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 山本 貴士, 教授 八木 知己, 教授 高橋 良和 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
84

Zpracování signálů elektromagnetické a akustické emise při mechanickém zatěžování pevných látek / Processing of electromagnetic and acoustic emission signals during mechanical stressing of solids

Šopík, Martin January 2008 (has links)
Electromagnetic emission and acoustic emission are physical phenomena evoked in non-conductive material by the sudden release of energy that generate rising cracks in material structure. The significant is a fact that these emission signals are detected already in stadium of materials loading whereof can be used e.g. at non-destructive diagnostics of building materials and constructions. In the appropriate manner processing of the emitted signals then make possible to obtain valuable informations for study physical properties of cracks. Master’s thesis describes methods designed for important signal data ascertainment in time, frequency even time-frequency domain. It can be e.g. start time, maximum value, dominant frequency in spectrum etc. All these methods are implemented into main program. Next load is formularization of source signal transformation which is given by used measuring circuit. Analytical method is chosen for solving. It means finding out reserve electrical circuit with constant element values. Resultant circuit approaches original circuit with less square error than existing way. The signal transformation is described by differential equation of second order with constant coefficients. MATLAB software is used for all computations and projections.
85

Lithium Niobate Acoustoelectric Platforms for Integrated Non-Reciprocal RF MEMS Devices

Matthew J Storey (10285355) 16 March 2021 (has links)
<div>Some of the biggest challenges with analog signal processing at radio frequencies (RF) are: RF loss at the frequency of interest, large enough fractional bandwidth, and sufficient delay. It is difficult to achieve enough delay in radio front ends using a purely electromagnetic approach since it is limited to a fraction of the speed of light. A solution has been the use of acoustic RF devices, such as surface acoustic wave (SAW) delaylines and MEMS filters. For some acoustic RF devices, like high performance Transmit and Receive SAW correlators, the long delays introduce significant propagation losses. These propagation losses can be compensated within the device by integrating a low noise amplifier into the acoustic correlator architecture. This can be accomplished by designing the SAW correlator on a high performance acoustoelectric (AE) platform. The AE effect is a phenomenon where nearby free carriers can interact with a travelling acoustic wave. Free carriers in close proximity to a piezoelectric material can interact with a travelling acoustic wave through its periodic potential. When a drift field is applied, depending on the relative velocity difference between the free carriers and acoustic wave, energy can either be transferred into (amplification) or out of (attenuation) the acoustic wave. </div><div><br></div><div>This thesis investigates the design and feasibility of AE MEMS devices on several Lithium Niobate (LN) platforms. First, the key acoustic and free carrier parameters are discussed and optimized for an ideal high performance AE material stack. In order to debug and analyze the performance of intermediate steps in the process of making high performance AE MEMS devices, three LN-based platforms are used throughout this work. These platforms help further examine some of the key challenges associated with making a high performance AE platform, like wafer bonding, fabrication, device design, and device operating conditions. These material stacks consist of: thin film LN bonded to a silicon wafer (LNOSi), thin film LN bonded to a silicon on insulator wafer (LNOSOI), and epitaxial indium gallium arsenide bonded to a LN wafer (InGaAs-LN).</div><div><br></div><div>The acoustic and piezoelectric performance of SAW devices on the LNOSi and LNOSOI platforms are modeled using COMSOL Multiphysics. A full study is performed to determine the piezoelectric coupling coefficient variation vs. device wavelength, propagation angle, transducer metal, and acoustic mode. A lumped element cross-field Mason model is modified to include substrate conductivity and simulated in Advanced Design System (ADS) software. SAW delaylines are then fabricated with both aluminum (Al) and gold (Au) Interdigital Transducers (IDT) and measured to compare to the simulated results. The analytical AE theory is then presented and calculations are performed to determine the desired (optimum) carrier concentration for AE devices. In addition to the 1D analytical AE model, initial work is done on developing a generalized 2D Finite Element Analysis (FEA) AE modeling scheme in COMSOL. The results for a piezoelectric semiconductor bulk acoustic wave (BAW) resonator and SAW delayline amplifier are presented. </div><div><br></div><div>On the LNOSi platform, gate controlled passive AE delaylines are fabricated and measured to examine the effects of LN bonding on Silicon free carrier concentrations and interface charges. Then, the fabrication and initial measurement results for doped Silicon AE delayline amplifiers are outlined. Based on the device design, the non-reciprocal nature of the AE effect can be used for more than just amplification and loss compensation. Using the InGaAs-LN platform, several classes of AE devices are designed and tested in pulsed mode operation. First, a series of segmented AE delayline amplifiers are measured to look at how the relative AE gain performance and input DC power scale with acoustic frequency, segment unit length, and number of segments. By taking advantage of the non-reciprocal shift in acoustic velocity, a dual-voltage AE delayline phase shifter is designed and tested. Routing of the acoustic waves between parallel delaylines can be accomplished through multistrip couplers (MSC) and can increase the library of possible AE device designs. The simplest example is a 3-port AE switch, which is designed and tested. The demonstration of these AE MEMS devices opens the door to a larger library of non-reciprocal acoustic devices utilizing the AE effect in high performance integrated material platforms.</div>
86

DEVELOPMENT OF A DATA ACQUISITION SYSTEM AND PIEZOELECTRIC SENSORS FOR AN EXPERIMENTAL STRUCTURAL NEURAL SYSTEM

SHINDE, VISHAL 21 July 2006 (has links)
No description available.
87

FACTORS INFLUENCING PHARMACISTS’ DECISION TO REPORT ADVERSE EVENTS RELATED TO DIETARY SUPPLEMENTS

Alhammad, Ali M. 01 January 2012 (has links)
Background: The increasing consumption of dietary supplements (DS) has drawn the attention of regulatory agencies, researchers and healthcare professionals. The US Food and Drug Administration (FDA) does not require premarketing assessment of DS considering them safe unless proven otherwise. However, the reporting rate of DS adverse events (DS-AE) is low. Objective: To describe pharmacists’ attitudes and knowledge of DS and DS information resources, and to determine the importance of selected attributes in pharmacists’ decisions to report a DS-AE. Methods: A convenience sample of practicing pharmacists in Virginia was surveyed using a web-based self-administered questionnaire. A conjoint analysis exercise was developed using several scenarios based on a set of five attributes: patient’s age, initiation of DS, last modification in drug therapy, evidence supporting the AE, and outcome of the AE. Participants were asked to indicate their decision to report the AE in each scenario to prescriber, drug manufacturer, DS manufacturer and FDA on a 6-point ordered scale. Participants’ attitude, knowledge of DS, demographic information, and DS information resources were also requested. Linear regression models were used to determine the relative importance of the profile attributes on a pharmacist’s decision to report the AE. The effects of other characteristics on the importance of the attributes were assessed. Results: Participants’ overall attitudes were relatively positive for the clinical use of DS but negative for safe of DS. Formal training on DS was associated with better knowledge of DS regulation. The average knowledge score of DS identification was relatively good but was low for DS regulation. Lexi-Comp® was the most widely used and available information resource and the Natural Medicines Comprehensive Database was the most useful once. The most important attribute that a pharmacist considered in the decision to report a DS-AE to DS manufacturer, drug manufacturer and FDA was the outcome of the AE followed by the evidence supporting the AE. Ranking of these two factors was the reversed in reporting to prescriber. Conclusions: Outcome and evidence of the AE are the most important factors participants considered when reporting. Other characteristics do not have an impact on the relative importance of the attributes.
88

Autonomous Landing Of Unmanned Aerial Vehicles

Singh, Shashiprakash 02 1900 (has links)
In this thesis the problem of autonomous landing of an unmanned aerial vehicle named AE-2 is addressed. The guidance and control technique is developed and demonstrated through numerical simulation results. The complete work includes Mathematical modeling, Control design, Guidance and State estimation for AE-2, which is a fixed wing vehicle with 2m wing span and 6kg weight. The aerodynamic data for AE-2 is available from static wind tunnel tests. Functional fit is done on the wind tunnel data with least squares method to find static aerodynamic coefficients. The aerodynamic forces and moment coefficients are highly nonlinear some of them are partitioned in two zones based on the angle of attack. The dynamic derivatives are found with Athena Vortex Lattice software. For the validation of vortex lattice method the static derivatives obtained by the wind tunnel tests and vortex lattice method, are compared before finding dynamic derivatives. The dynamics of the servo actuators for the aerodynamic control surfaces is incorporated in the simulation. The nonlinear dynamic inversion technique has been used for the guidance and control design. The control is structured in two loops, outer and inner loop. The goal of outer loop is to track the guidance commands of altitude, roll angle and yaw angle by converting them into body rate commands through dynamic inversion. The inner loop than tracks these commanded roll rate, pitch rate and yaw rate by finding the required deflection of control surfaces. The forward velocity of the vehicle is controlled by varying the throttle. A controller for actuator is also designed to reduce the lag. The guidance for landing consists of three phases approach, glideslope and flare. During approach the vehicle is aligned with the runway and guided to a specified height from where the glideslope can begin. The glideslope is straight line path specified by a flight path angle which is restricted between 3 to 4 degree. At the end of glideslope which is marked by flare altitude the flare maneuver begins which is an exponential curve. The problem of transition between the glideslope and flare has addressed by ensuring continuity and smoothness at transition. The exponential curve of flare is designed to end below the ground so that it intersects the ground at a prespecified point. The sink rate at touchdown is also controlled along with the location of touchdown point. The state estimation has been done with Extended Kalman Filter in continuous discrete formulation. The external disturbances like wind shear and wind gust are accounted by appending them in state variables. Further the control design with guidance is tested from various initial conditions, in presence of wind disturbances. The designed filter has also been tested for parameter uncertainty.
89

Effect of Favourable Pressure Gradient on Turbulence in Boundary Layers

Patwardhan, Saurabh Sudhir January 2015 (has links) (PDF)
This thesis explores the effects of favourable pressure gradient on the structure of turbulent boundary layers (TBL). In this context, the structure of three types of boundary layers namely a zero-pressure-gradient boundary layer, equilibrium boundary layers under favourable pressure gradient and relaminarising boundary layers is investigated mostly from the point of view of large-scale dynamics. This covers a whole range of flows on the so-called Reynolds number - pressure gradient diagram - from turbulent zero pressure gradient flows to relaminarising flows at relatively low Reynolds numbers. The study of turbulent and relaminarising boundary layers is carried out primarily using direct numerical analyses and some limited experiments in this thesis. The direct numerical simulations (DNS) of a zero-pressure-gradient turbulent boundary layer (ZPG TBL) is validated against the experimental and DNS data available in the literature. Furthermore, the important question of time-averaged signature of a large scale vortex structure and its relation with the two-point correlations in the context of ZPG TBL is addressed. In this context, a synthetic flow consisting of hairpin vortex structures is generated. The two-point correlations in the synthetic TBL and a real TBL are found to be qualitatively similar. This shows that the vortex structure leaves a time-averaged footprint in the form of correlations of velocity and vorticity. A study of two-point correlations in a real TBL shows that the structure angle deduced from two-point correlations varies with wall-normal location. The structure angle is small near the wall and increases away from the wall in agreement with the previous studies. The small angle close to the wall signifies the presence of streamwise structure. Away from the wall, this streamwise coherence is lost and the correlation contours become more isotropic. The presence of the wall and the mean shear affects smaller scales making them anisotropic close to the wall. Towards the edge of the boundary layer, smaller scales tend to become isotropic leading to -5/3 law in the energy spectrum. Further, a relation between a passive scalar in a flow and vorticity is explored. It is found that the scalar product of vorticity and scalar gradient is conserved in a non-diffusive situation. This assertion is demonstrated under various flow conditions. Despite the differences in Schmidt numbers, the structures observed in the outer layer are similar in both numerical and experimental flow visualisations. Further, the equilibrium turbulent boundary layers under favourable pressure gradient are studied. The numerical simulations of equilibrium sink flow TBL are validated against the experimental results of Dixit (2010). A study of two-point correlations reveals that the near-wall structure angle decreases with a favourable pressure gradient in sink flow TBLs. In the outer region, the loss of streamwise coherence occurs at a wall-normal location closer to the wall than in an ZPG TBL. Edge intermittency study reveals that the flow is non-turbulent beyond y/δ = 0.8 inside the mean boundary layer edge. The variation of the ratio of pressure gradient to Reynolds shear stress gradient shows that this ratio is very large (> 50) beyond y/δ = 0.8. The dominance of pressure gradient makes this part of sink flow TBL to behave like a Euler-region. Small scales in sink flow TBL tend to be isotropic near the edge of the boundary layer and spectra shows -5/3 law akin to ZPG TBL, albeit at lower Reynolds numbers. The concept of equilibrium is extended to flows with wall transpiration. The sink flow TBL is a special case of more generalised equilibrium TBLs with wall transpiration. Conditions required for the flow with wall transpiration are derived. It is observed that there is a systematic variation of various statistical properties with wall velocity. Further, it is observed that the motion in these equilibrium flows is purely active like in sink flow TBL. In equilibrium TBL, the Reynolds shear stress is directly related to mean velocity. So we have at our disposal an exact relation between the Reynolds shear stress and the mean velocity gradient without the need to do any ad-hoc modelling for the sink flow. This is an interesting observation from the point of view of modelling TBLs using eddy-viscosity. Eddy-viscosity model derived from sink flow TBL data is found to predict the mean velocity profiles in flows with wall transpiration with a sufficient accuracy. Similarly, it is plausible that any general non-equilibrium flow may be treated as a departure from equilibrium. With suitable modifications, eddy viscosity obtained from equilibrium TBL may be used to model them without invoking ad-hoc assumptions. Finally, the effect of initial Reynolds number on the process of relaminarisation is studied numerically and experimentally. ZPG TBLs with two different initial Reynolds number are subjected to different degrees of acceleration. However, the pressure gradient history is same in both the cases. It is observed that the flow with a higher initial Reynolds number relaminarises at a lower pressure gradient value than the flow with a lower initial Reynolds number. Assessment of different parameter criteria reveals that the criterion proposed by Narasimha & Sreenivasan (1973) is appropriate for the prediction of the onset of relaminarisation. Further, the structures in relaminarising flows are studied. The near-wall structure angle is found to decrease with the increasing FPG and the streamwise length of the structure also increases. The low and high speed streaks in the near-wall region are found to become longer and less undulating with an increase in the spanwise spacing. A stabilisation mechanism of near-wall streaks is also presented which suggests that the kinematic effect of mean vertical velocity directed towards the wall is responsible for the stabilisation of streaks.
90

Fracture Energy And Process Zone In Plain Concrete Beams (An Experimental Study Including Acoustic Emission Technique)

Muralidhara, S 10 1900 (has links) (PDF)
Concrete, which was hitherto considered as a brittle material, has shown much better softening behavior after the post peak load than anticipated. This behavior of concrete did put the researchers in a quandary, whether to categorize concrete under brittle materials or not. Consequently concrete has been called a quasi-brittle material. Fracture mechanics concepts like Linear elastic fracture mechanics (LEFM) and Plastic limit analysis applicable to both brittle and ductile materials have been applied to concrete to characterize the fracture behavior. Because of quasi-brittle nature of concrete, which lies between ductile and brittle response and due to the presence of process zone ahead of crack/notch tip instead of a plastic zone, it is found that non-linear fracture mechanics (NLFM) principles are more suitable than linear elastic fracture mechanics (LEFM) principles to characterize fracture behavior. Fracture energy, fracture process zone (FPZ) size and the behavior of concrete during fracture process are the fracture characteristics, which are at the forefront of research on concrete fracture. Another important output from the research on concrete fracture has been the size effect. Numerous investigations, through mathematical modeling and experiments, have been carried out and reported in literature on the effect of size on the strength of concrete and fracture energy. Identification of the sources of size effect is of prime importance to arrive at a clear analytical model, which gives a comprehensive insight into the size effect. With the support of an unambiguous theory, it is possible to incorporate the size effects into codes of practices of concrete design. However, the theories put forth to describe the size effect do not seem to follow acceptable regression. After introduction in Chapter-1 and literature survey in Chapter-2, Chapter-3 details the study on size effect through three point bend (TPB) tests on 3D geometrically similar specimens. Fracture behavior of beams with smaller process zone size in relation to ligament dimension approaches LEFM. The fracture energy obtained from such beams is said to be size independent. In the current work Size effect law (Bazant et al. 1987) is used on beams geometrically similar in three dimensions with the depth of the largest beam being equal to 750mm, and size independent fracture energy G Bf is obtained. In literature very few results are available on the results obtained from testing geometrically similar beams in three dimensions and with such large depth. In the current thesis the results from size effect tests yielded average fracture energy of 232 N/m. Generally the fracture energies obtained from 2D-geometrically similar specimens are in the range of 60-70 N/m as could be seen in literature. From 3D-geometrically similar specimens, the fracture energies are higher. The reason is increased peak load, could be due to increased width. The RILEM fracture energy Gf , determined from TPB tests, is said to be size dependent. The assumption made in the work of fracture is that the total strain energy is utilized for the fracture of the specimen. The fracture energy is proportional to the size of the FPZ, it also implies that FPZ size increases with increase in (W−a) of beam. This also means that FPZ is proportional to the depth W for a given notch to depth ratio, because for a given notch/depth, (W−a) which is also W(1 − a ) is proportional to W`because (1 − a ) is a constant. WWThis corroborates the fact that fracture energy increases with size. Interestingly, the same conclusion has been drawn by Abdalla & Karihaloo (2006). They have plotted a curve relating fracture process zone length and overall depth the beam. In the present study a new method namely Fracture energy release rate method is suggested. In the new method the plot of Gf / (W−a) versus (W−a) is obtained from a set of experimental results. The plot is found to follow power law and showed almost constant value of Gf / (W−a) at larger ligament lengths. This means that fracture energy reaches a constant value at large ligament lengths reaffirming that the fracture energy from very large specimen is size independent. The new method is verified for the data from literature and is found to give consistent results. In a quasi-brittle material such as concrete, a fracture process zone forms ahead of a pre-existing crack (notch) tip before the crack propagates from the tip. The process zone contains a scatter of micro-cracks, which coalesce into one or more macro-cracks, which eventually lead to fracture. These micro-cracks and macro-cracks release stresses in the form of acoustic waves having different amplitudes. Each micro or macro crack formation is called an acoustic emission (AE) event. Through AE technique it is possible to locate the positions of AE events. The zone containing these AE events is termed the fracture process zone (FPZ). In Chapter-4, a study on the evolution of fracture process zone is made using AE technique. In the AE study, the fracture process zone is seen as a region with a lot of acoustic emission event locations. Instead of the amplitudes of the events, the absolute AE energy is used to quantify the size of the process zone at various loading stages. It has been shown that the continuous activities during the evolution of fracture process zone correspond to the formation of FPZ, the size of which is quantified based on the density of AE events and AE energy. The total AE energy released in the zone is found to be about 78% of the total AE energy released and this is viewed as possible FPZ. The result reasonably supports the conclusion, from Otsuka and Date (2000) who tested compact tension specimens, that zone over which AE energy is released is about 95% can be regarded as the fracture process zone. As pointed out earlier, among the fracture characteristics, the determination of fracture energy, which is size independent, is the main concern of research fraternity. Kai Duan et al. (2003) have assumed a bi-linear variation of local fracture energy in the boundary effect model (BEM) to showcase the size effect due to proximity of FPZ to the specimen back boundary. In fact the local fracture energy is shown to be constant away from boundary and reducing while approaching the specimen back boundary. The constant local fracture energy is quantified as size independent fracture energy. A relationship between Gf , size independent fracture energy GF , un-cracked ligament length and transition ligament length was developed in the form of equations. In the proposed method the transition ligament length al is taken from the plot of histograms of energy of AE events plotted over the un-cracked ligament. The value of GF is calculated by solving these over-determined equations using the RILEM fracture energies obtained from TPB tests. In chapter-5 a new method involving BEM and AE techniques is presented. The histogram of energy of AE events along the un-cracked ligament, which incidentally matches in pattern with the local fracture energy distribution, assumed by Kai Duan et al. (2003), along the un-cracked ligament, is used to obtain the value of GF , of course using the same equations from BEM developed by Kai Duan et al. (2003). A critical observation of the histogram of energy of AE events, described in the previous chapter, showed a declining trend of AE event pattern towards the notch tip also in addition to the one towards the specimen back boundary. The pattern of AE energy distribution suggests a tri-linear rather than bi-linear local fracture energy distribution over un-cracked ligament as given in BEM. Accordingly in Chapter-6, GF is obtained from a tri-linear model, which is an improved bi-linear hybrid model, after developing expressions relating Gf , GF , (W−a) with two transition ligament lengths al and blon both sides. The values of Gf , and GF from both bi-linear hybrid method and tri-linear method are tabulated and compared. In addition to GF , the length of FPZ is estimated from the tri-linear model and compared with the values obtained from softening beam model (SBM) by Ananthan et al. (1990). There seems to be a good agreement between the results. A comparative study of size independent fracture energies obtained from the methods described in the previous chapters is made. The fracture process in concrete is another interesting topic for research. Due to heterogeneity, the fracture process is a blend of complex activities. AE technique serves as an effective tool to qualitatively describe the fracture process through a damage parameter called b-value. In the Gutenberg-Richter empirical relationship log 10N=a−bM, the constant ‘b’ is called the b-value and is the log linear slope of frequency-magnitude distribution. Fault rupture inside earth’s crust and failure process in concrete are analogous. The b-value, is calculated conventionally till now, based on amplitude of AE data from concrete specimens, and is used to describe the damage process. Further, sampling size of event group is found to influence the calculated b-value from the conventional method, as pointed out by Colombo et al. (2003). Hence standardization of event group size, used in the statistical analysis while calculating b-value, should be based on some logical assumption, to bring consistency into analytical study on b-value. In Chapter-7, a methodology has been suggested to determine the b-value from AE energy and its utilization to quantify fracture process zone length. The event group is chosen based on clusters of energy or quanta as named in the thesis. Quanta conform to the damage stages and justify well their use in the determination of the b-value, apparently a damage parameter and also FPZ length. The results obtained on the basis of quanta agree well with the earlier results.

Page generated in 0.0184 seconds