• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Biotopia: An interdisciplinary connection between ecology, suburbia, and the city

Phillips, Jessica 01 June 2009 (has links)
In an era when cities and towns are changing rapidly, public spaces are the key to reviving civic engagement. By re-introducing these public realms as ecological environments, we can re-structure the organic growth of civic tissue, re-define the city street into a park environment, and reveal the ecological landmarks that once beautified the landscape. These ecological landmarks will be used as corridors, nodes of circulation and storm water management to not only creates a regenerative landscape but to create a connection between ecology, suburbia and the city. The public realm in America has two roles: it is the dwelling place of our civilization and our city life, and our physical manifestation of the common good. When we degrade the public realm, we will automatically degrade the quality of our city and our city life, plus the character of all the enactments of our public life and communal life that takes place there. The public realm has to inform us not only where we are geographically, but has to inform us where we are in our culture, where we've come from, what kind of people we are, and it needs to afford us a glimpse as to where we are going. The past sixty years has engendered a decentralization of the city and a loss of our public realm. Suburbia was created and the absence of community development within cities increased. The lack of social economic interaction now challenges each city today. The inabilities to obtain a socially sustainable closed-loop system lifestyle are some of the challenges families continually battle. Transformation, succession and operation will help to emphasize and revitalize the downtown riverfront district in Nashville, Tennessee and create a living, dynamic entity that connects you to suburbia and an ecological dwelling environment. A naturalized mouth and iconic identity to the river will create a comprehensive plan for addressing urban design and the connection between the two sides of the river. Transportation, naturalization, sustainability and other ecological issues will be addressed in the development of a sustainable "green city," a new destination where city, river and suburbia interact in a dynamic and balanced relationship creating an urban estuary.
2

Green Room : A climate controlling grow-box for growing mushrooms and greens. / Green Room : En klimatkontrollerande tillväxtlåda för odling av svampar och växter.

Skullman, Bill, Herlin, Gabriella January 2023 (has links)
This report covers a project on a partially automated aeroponic and fungi growing system. The purpose is to evaluate if an enclosed space system can be automated to produce healthy crops of greens and fungi, and investigate how well the system can switch between these two growth modes. Factors that will be automated include regulation of temperature, humidity, air ventilation, and light exposure time. The research will be focused on Romaine lettuce and Golden Oyster mushroom. The methods used include research, hardware setup, software programming, chassis construction, and experiments. Relevant factors for the growing environment, such as lighting, temperature, and nutrient solutions were studied. The hardware components used in the project can shortly be described as follows. A real time clock ensure accurate timing for the microcontroller that regulates the indoor climate based on sensor readings. LEDs light up the chamber and a humidifier provide the roots access to a nutrient solution. A fan provides cooling, and filters block out unwanted microorganisms and fungi spores from the ventilation air. A display provides the user with relevant information. The system code written in C++ contain six main functions and two support functions. Depending on the growth mode, climate control functions are selected. The system has control variables allowing the administrator to set threshold levels for humidity and nutrient spray periods. The outer case of the chassis was made out of painted acrylic to block out light and retain moisture. The water-nutrient solution basin was designed to avoid leakage, net cups hold the plants in a raised bed, a base plate acts as flooring for the mushrooms, as well as a placement enforcer for the humidifier. An inner roof separates the moist growth chamber from the electronics compartment above. Two experiments were conducted in separate prototypes simultaneously for green sand mushrooms. For the mushroom experiment, a grow kit was installed after thorough cleaning. The fruiting process was monitored and photographed daily. Results showed successful mushroom growth and healthy fruiting bodies. For the greens experiment, a nutrient solution was mixed and lettuce seeds were placed in rock wool cylinders that were installed in net cups. Photographs were taken every three days to track the progress. The lettuce seeds germinated and started growing. Control variables were altered multiple times to maximize performance but optimal settings were not found. The plants died whilst unsupervised. The experiments were partially successful and demonstrated potential for growing both greens and mushrooms. The prototype was effective in maintaining set temperature and humidity levels. The parameters necessary for successful growth was effectively automated and the system has great potential for further improvements and automation. / Målet med projektet är att studera hur väl det går att odla både svamp och fotosyntetiserande växter i samma slutna, delvis automatiserande aeroponiskasystem. I projektet undersöks om det går att byta mellan de två odlingssätten och hur automatiserad processen kan vara. Produkten är tänkt att fylla utrymmet som hittats på marknaden för enkla odlingssystem hemma för i synnerhet svamp. Faktorer att ta hänsyn till är temperatur, luftfuktighet och ljusexponeringstid. Andra faktorer som pH värde eller byte av vattnet utesluts till följd av tid- och resursbegränsningar. Metoden är indelad i forskning, hårdvara, mjukvara, chassi och experiment. Forskningen täcker nödvändig information om faktorer relaterade till odling av både svamp och gröna växter i aeroponiska system. Exempelvis hur mycket ljus, vatten och näring som behövs. Kapitlet om hårdvara tar upp vilka komponenter som används och varför. I centrum är en microkontroller, en Arduino micro, som med hjälp av en realtidskolocka styr när belysningen ska lysa, när luftfuktaren ska vara på samt när fläktarna ska gå. En DHT11 sensor skickar information till Arduinon att agera utifrån. I mjukvara ingår hur koden är uppbyggd för att styra microkontrollern och hur användaren kan anpassa värden till sitt tycke. För att hjälpa användaren visas relevant data på en skärm. Produkten är uppbyggd med ett mörklagt och tätande skal av akrylplast. Vatten med eventuell näring för växtläget är samlat i en tät balja längst ner i lådan där luftfuktaren även är placerad. Över baljan vilar antingen ett svampodlingskit på en perforerad yta eller en hållare för odling av växter i nätkorgar med stenull. I taket är en 20W LED fäst på en kylfläns för kylning tillsamman med en närliggande fläkt. Allra högst upp är elektroniken, skyddad från fukten nere i lådan av ett lager akrylplast.Två experiment hölls parallellt med varandra i två likadana odlingskammare för att hinna utvärdera både svamp och fotosyntetiserande växter. Citronmussling valdes som svamp och Romansallad som växt. Experimenten dokumenterades regelbundet med fotografier och kommentarer om det som observerats. Experimenten var till stor del lyckade även om vissa parametrar behövde justeras under förloppet. Det aeroponiska systemet producerar svamp och växter av god kvalitet. Slutsatsen som kan dras är att det går att odla både svamp och växter i samma produkt. De parametrar som inkluderats inom projektets avgränsningar gick att automatisera. Det finns även goda möjligheter att förbättra automatiseringsnivån.

Page generated in 0.1657 seconds