Spelling suggestions: "subject:"aerospace 2structures"" "subject:"aerospace restructures""
21 |
Multiscale thermoviscoelastic modeling of composite materialsOrzuri Rique Garaizar (10724172) 05 May 2021 (has links)
<div>Polymer matrices present in composite materials are prone to have time-dependent behavior very sensitive to changes in temperature. The modeling of thermoviscoelasticity is fundamental for capturing the performance of anisotropic viscoelastic materials subjected to both mechanical and thermal loads, or for manufacturing simulation of composites. In addition, improved plate/shell and beam models are required to efficiently design and simulate large anisotropic composite structures. Numerical models have been extensively used to capture the linear viscoelasticity in composites, which can be generalized in integral or differential forms. The hereditary integral constitutive form has been adopted by many researchers to be implemented into finite element codes, but its formulation is complex and time consuming as it is function of the time history. The differential formulation provides faster computation times, but its applicability has been limited to capture the behavior of three-dimensional thermoviscoelastic orthotropic materials.</div><div><br></div><div>This work extends mechanics of structure genome (MSG) to construct linear thermoviscoelastic solid, plate/shell and beam models for multiscale constitutive modeling of three-dimensional heterogeneous materials made of time and temperature dependent constituents. The formulation derives the transient strain energy based on integral formulation for thermorheologically simple materials subject to finite temperature changes. The reduced time parameter is introduced to relate the time-temperature dependency of the anisotropic material by means of master curves at reference conditions. The thermal expansion creep is treated as inherent material behavior. Exact three-dimensional thermoviscoelastic homogenization solutions are also formulated for laminates modeled as an equivalent, homogeneous, anisotropic solid. The new model is implemented in SwiftComp, a general-purpose multiscale constitutive modeling code based on MSG, to handle real heterogeneous materials with arbitrary microstructures, mesostructures or cross-sectional shapes.</div><div><br></div><div>Three-dimensional representative volume element (RVE) analyses and direct numerical simulations using a commercial finite element software are conducted to verify the accuracy of the MSG-based constitutive modeling. Additionally, MSG-based plate/shell results are validated against thin-ply high-strain composites experimental data showing good agreement. Numerical cases with uniform and nonuniform cross-sectional temperature distributions are studied. The results showed that unlike MSG, the RVE method exhibits limitations to properly capture the long-term behavior of effective coefficients of thermal expansion (CTEs) when time-dependent constituent CTEs are considered. The analyses of the homogenized properties also revealed that despite the heterogeneous nature of the composite material, from a multiscale analysis perspective, the temperature dependencies of the effective stiffness and thermal stress properties are governed by the same shift factor as the polymer matrix. This conclusion remains the same for MSG-based solid, plate/shell and beam models with uniform temperature distributions.</div>
|
22 |
On the Use of Metaheuristic Algorithms for Solving Conductivity-to-Mechanics Inverse Problems in Structural Health Monitoring of Self-Sensing CompositesHashim Hassan (10676238) 07 May 2021 (has links)
<div>Structural health monitoring (SHM) has immense potential to improve the safety of aerospace, mechanical, and civil structures because it allows for continuous, real-time damage prognostication. However, conventional SHM methodologies are limited by factors such as the need for extensive external sensor arrays, inadequate sensitivity to small-sized damage, and poor spatial damage localization. As such, widespread implementation of SHM in engineering structures has been severely restricted. These limitations can be overcome through the use of multi-functional materials with intrinsic self-sensing capabilities. In this area, composite materials with nanofiller-modified polymer matrices have received considerable research interest. The electrical conductivity of these materials is affected by mechanical stimuli such as strain and damage. This is known as the piezoresistive effect and it has been leveraged extensively for SHM in self-sensing materials. However, prevailing conductivity-based SHM modalities suffer from two critical limitations. The first limitation is that the mechanical state of the structure must be indirectly inferred from conductivity changes. Since conductivity is not a structurally relevant property, it would be much more beneficial to know the displacements, strains, and stresses as these can be used to predict the onset of damage and failure. The second limitation is that the precise shape and size of damage cannot be accurately determined from conductivity changes. From a SHM point of view, knowing the precise shape and size of damage would greatly aid in-service inspection and nondestructive evaluation (NDE) of safety-critical structures. The underlying cause of these limitations is that recovering precise mechanics from conductivity presents an under determined and multi-modal inverse problem. Therefore, commonly used inversion schemes such as gradient-based optimization methods fail to produce physically meaningful solutions. Instead, metaheuristic search algorithms must be used in conjunction with physics-based damage models and realistic constraints on the solution search space. To that end, the overarching goal of this research is to address the limitations of conductivity-based SHM by developing metaheuristic algorithm-enabled methodologies for recovering precise mechanics from conductivity changes in self-sensing composites.</div><div><div><br></div><div>Three major scholarly contributions are made in this thesis. First, a piezoresistive inversion methodology is developed for recovering displacements, strains, and stresses in an elastically deformed self-sensing composite based on observed conductivity changes. For this, a genetic algorithm (GA) is integrated with an analytical piezoresistivity model and physics-based constraints on the search space. Using a simple stress based failure criterion, it is demonstrated that this approach can be used to accurately predict material failure. Second, the feasibility of using other widely used metaheuristic algorithms for piezoresistive inversion is explored. Specifically, simulated annealing (SA) and particle swarm optimization (PSO) are used and their performances are compared to the performance of the GA. It is concluded that while SA and PSO can certainly be used to solve the piezoresistive inversion problem, the GA is the best algorithm based on solution accuracy, consistency, and efficiency. Third, a novel methodology is developed for precisely determining damage shape and size from observed conductivity changes in self-sensing composites. For this, a GA is integrated with physics-based geometric models for damage and suitable constraints on the search space. By considering two specific damage modes —through-holes and delaminations —it is shown that this method can be used to precisely reconstruct the shape and size of damage. </div><div><br></div><div>In achieving these goals, this thesis advances the state of the art by addressing critical limitations of conductivity-based SHM. The methodologies developed herein can enable unprecedented NDE capabilities by providing real-time information about the precise mechanical state (displacements, strains, and stresses) and damage shape in self-sensing composites. This has incredible potential to improve the safety of structures in a myriad of engineering venues.</div></div>
|
23 |
MEASUREMENT OF TEMPERATURE ON THE LEG OF A LUNAR LANDERDylan Thomas Graulich (16679985) 02 August 2023 (has links)
<p> The last decade has seen a proliferation of spaceflight ventures, sparking a new commercial Space Race. Companies ranging in size from SpaceX, Blue Origin, and Virgin Galactic to startups with just a few employees have submitted designs for a Lunar Lander. As the world shifts its attention back to the Moon, reducing mass and increasing safety in these systems has become vital. One avenue to weight reduction may be the legs of the lander. This experiment measures the heating of lunar lander legs from interaction with the lander’s rocket exhaust plume. The temperature of the legs was measured using thermocouples and thermochromic paint. Thirty-two thermocouples were attached in a grid pattern to generate a temperature map of the leg. Removable thermochromic paint shields provide an immediate temperature indicator so that leg distance and angle can be quickly adjusted without having to view the thermocouple temperature data. Heat transfer is also measured on the shield, finding radiation and convection. Ground tests show that the test methods, instruments, and hardware are reliable. Ground tests also show that the most significant heating and convection in ground-leg interactions occur on the bottom foot of the lander, with little heating on the top half of the leg. Further study of this heating will be vital for the future of lunar research </p>
|
24 |
SPRING-IN ANGLE PREDICTION FOR THERMAL SHRINKAGE IN CROSS-PLY LAMINATEKwanchai Chinwicharnam (14213018) 09 December 2022 (has links)
<p> </p>
<p>Thermal shrinkage in advanced composite manufacturing causes residual stress in a cylindrical anisotropic segment. The residual stress later induces a spring-in angle when the temperature change is negative. The superposition method in the finite element method (FEM) by ABAQUS© proves that only the residual stress in the circumferential direction controls the spring-in angle and induces the radial residual stress. To predict the angle change, the residual stress is firstly determined by using the closed-loop geometry in FEM and then implemented into the cylindrical cross-ply symmetric laminate segment. Consequently, the geometry creates the spring-in angle under the traction-free surface. The angle change is in good agreement with the Radford equation and is found to depend on the coefficient of thermal expansion (CTE) in the circumferential and radial directions rather than other material properties and geometry dimensions. </p>
<p>The study found a new limitation of the Radford equation, in that it is accurate when the part is anisotropic symmetric laminate, but not when it is unsymmetric. The accuracy of the Radford equation is further explored with the double curve geometry. Using the superposition method, the circumferential residual stress along the major curve is found to have an influence on the angle change not only of the major curve, but also of the minor curve. The negative temperature change produces the spring-in angle on the major curve, and both spring-in and -off angles on the minor curve, which rely on the radius ratio. In addition, the spring-in angle on the major curve is coincident with the Radford equation. In sum, knowing the spring-in angle is very helpful in designing a tool in advanced composite manufacturing, and the superposition method and the Radford equation are applicable to predict the spring-in angle.</p>
|
25 |
HHARJONO_MASTERS_THESIS-6.pdfHanson-Lee Nava Harjono (14232875) 09 December 2022 (has links)
<p>In an AP-HTPB propellant microstructure, the local strain rate depends on the AP crystal size and the material, while the local temperature rate depends on the impact velocity, AP crystal size, and the material. Larger AP crystals lead to higher local strain rates and higher local temperature rates, which means hot spots are more likely to occur in AP-HTPB propellants with more large AP crystals.</p>
|
26 |
Utilizing Embedded Sensing for the Development of Piezoresistive ElastodynamicsJulio Andres Hernandez (14684092) 21 July 2023 (has links)
<p>Obtaining full-field \emph{dynamic} material state awareness would have profound and wide-ranging implications across many fields and disciplines. For example, achieving dynamic state awareness in soft tissues could lead to the early detection of pathophysiological conditions. Applications in geology and seismology could enhance the accuracy of locating mineral and hydrocarbon resources for extraction or unstable subsurface formations. Ensuring safe interaction at the human-machine interfaces in soft robotic applications is another example. And as a final representative example, knowing real-time material dynamics in safety-critical structures and infrastructure can mitigate catastrophic failures. Because many materials (e.g., carbon fiber-reinforced polymers composites, ceramic matrix composites, biological tissues, cementitious and geological materials, and nanocomposites) exhibit coupling between their mechanical state and electrical transport characteristics, self-sensing via the piezoresistive effect is a potential gateway to these capabilities. While piezoresistivity has been mostly explored in static and quasi-static conditions, using piezoresistivity to achieve dynamic material state awareness is comparatively unstudied. Herein lies the significant gap in the state of the art: the piezoresistive effect has yet to be studied for in-situ dynamic sensing.</p>
<p><br></p>
<p>In this thesis, the gap in the state of the art is addressed by studying the piezoresistive effect of carbon nanocomposites subject to high-rate and transient elastic loading. Nanocomposites were chosen merely as a representative self-sensing material in this study because of their ease of manufacturability and our good understanding of their electro-mechanical coupling. Slender rods were manufactured using epoxy, modified with a small weight fraction of nanofillers such as carbon black (CB), carbon nanofibers (CNFs), and multi-walled carbon nanotubes (MWCNTs), and subject to loading states such as steady-state vibration at structural frequencies ($10^2-10^4$ Hz), controlled wave packet excitation, and high-strain rate impact loading in a split-Hopkinson pressure bar. This work discovers foundational principles for dynamic material state awareness through piezoresistivity. </p>
<p><br></p>
<p>Three major scholarly contributions are made in this dissertation. First, an investigation was pursued to establish dynamic, high-strain rate sensing. This investigation clearly demonstrated the ability of piezoresistivity to accurately track rapid and spatially-varying deformation for strain rates up to $10^2$ s$^{-1}$. Second, piezoresistivity was used to detect steady-state vibrations common at structural frequencies. Utilizing simple signal processing techniques, it was possible to extract the excitation frequency embedded into the collected electrical measurements. The third contribution examined the dynamic piezoresistive effect through an array of surface-mounted electrodes on CNF/epoxy rods subject to highly-controlled wave packet excitation. Electrode-spacing adjustments were found to induce artificial signal filtering by containing larger portions of the injected wave packets. The strain state in the rod was found after employing an inverse conductivity-to-mechanics model, thereby demonstrating the possibility of deducing actual in-situ strains via this technique. A digital twin in ABAQUS was constructed, and an elastodynamic simulation was conducted using identical dynamic loading, the results of which showed very good agreement with the piezo-inverted strains. </p>
<p><br></p>
<p>This work creates the first intellectual pathway to full-field dynamic embedded sensing. This work has far-reaching potential applications in many fields, as numerous materials exhibit self-sensing characteristics through deformation-dependent changes to electrical properties. Therefore, \emph{piezoresistive elastodynamics} has the incredible potential to be applied not just in structural applications but in other potentially innovated applications where measuring dynamic behavior through self-sensing materials is possible. </p>
|
27 |
Effect of Large Holes and Platelet Width on the Open-Hole Tension Performance of Prepreg Platelet Molded CompositesGabriel Gutierrez (13875776) 07 October 2022 (has links)
<p>Carbon-fiber reinforced polymers (CFRPs) are often used in the aerospace and automotive industries for their high strength-to-weight ratios and corrosion resistance. A new class of composites – known as Prepreg Platelet Molded Composites (PPMCs) – offers further advantageous such as high forming capabilities with modest compromises in strength and stiffness. One such property of PPMCs that have garnered interest over the years is their apparent insensitivity to notches. Previous studies have researched the effect of specimen size and platelet length on its effect on the open-hole performance of PPMCs. Research however has focused on thinner samples with smaller hole sizes and neglected thicker samples with larger holes. Additionally, while platelet sizes have been investigated for unnotched samples, platelet width on notched samples is less clear from the literature. The present thesis offers some investigations to aid in filling this knowledge gap. </p>
<p><br></p>
<p>The objective of this work is to study two parameters that could influence the performance of PPMCs under open-hole tension. First, thick (7.6 mm) specimens are subjected to large hole sizes (up to 19.08 mm) to investigate their behavior in comparison to the smaller sample sizes previously investigated in the literature. Through-thickness DIC measurements are taken to investigate strain gradients in these thicker specimens. Second, various platelet widths are tested to research their influence on notch insensitivity of open-hole tensile PPMC specimens. Lastly, a finite element based continuum damage mechanics model is implemented to predict macro-level structural properties using only material properties of the parent prepreg. It is found that large holes in thick samples increase notch sensitivity compared to other samples of similar diameter-to-width ratios. Narrower platelets were found to produce higher unnotched strengths, while wider platelets offered more notch insensitivity. Lastly, the finite element model developed was found to qualitatively replicate features and failure modes that are exhibited by PPMCs, though strength predictions became inaccurate at larger specimen sizes. Recommendations are made for future work on the basis of these findings. </p>
|
28 |
Understanding Loading Effects and Post-Processing Effects on the Durability of Additively Manufactured Ti-6Al-4VTaylor Ann Hodes (20248788) 17 November 2024 (has links)
<p dir="ltr">Additive manufacturing continues to show great promise for use in structural components due to the cost effectiveness and reduced complexity associated with optimized and targeted use of the method. However, before additive manufacturing can be widely accepted a more complete understanding of the material performance and microstructural features must be achieved. This thesis aims to further the understanding of cold dwell fatigue in additively manufactured Ti-6Al-4V and explore targeted microstructural control of additively manufactured Ti-6Al-4V through the use of printing parameter variations and hot isostatic pressing.</p><p dir="ltr">In the first portion of this thesis, experimental work was conducted to explore the effect of periodically applied load dwell and overloads on the stress-life relationship for additively manufactured Ti-6Al-4V. Samples printed using an optimized print parameter set, heat treated using hot isostatic pressing, machined, and longitudinally polished were tested across a variety of loading schemes including: constant amplitude, periodic dwell, periodic overload, and alternating periodic dwell and periodic overload. It was determined that, for the parameter set studied, periodic overload provided similar damage compared to constant amplitude cases, while periodic dwell provided greater damage compared to both constant amplitude and periodic overload cases. Additionally, a phenomenological failure prediction model for dwell, variable amplitude loading was created. The developed model combines the effects of plasticity and creep with an energy-based approach rooted in the fundamental behavior of the material.</p><p dir="ltr">In the second portion of this thesis a review of the literature is presented to explore the use of hot isostatic pressing in additively manufactured Ti-6Al-4V. The literature review holds the primary purpose of deepening the understanding of the relationships between hot isostatic pressing and microstructural control and how they are taken together to improve fatigue performance. The literature review explores many aspects of factors impacting fatigue life and how the additive manufacturing process impacts material microstructure. The final conclusion of the literature review is that 1 micrometer is the largest pore expected to achieve complete closure though hot isostatic pressing, that 40 micrometer is the critical pore size for fatigue failure, and the process for microstructural evolution during pore closure is dominated by creep and dynamic recrystallization. Using these facts targeted microstructural control can be explored to optimize fatigue performance through purposeful microstructural variations.</p>
|
29 |
<b>FIBER LENGTH ATTRITION OF LONG-DISCONTINUOUS FIBER REINFORCED POLYMER PELLETS IN A SINGLE SCREW EXTRUDER</b>Vasudha Narendra Kapre (20383512) 17 December 2024 (has links)
<p dir="ltr">Single screw extrusion is widely used in injection molding, extrusion additive manufacturing, and material pre-compounding. A single screw extruder has three stages – the solid conveying zone, the melt-transition or compression zone, and the melt-conveying zone. As the pellets are processed, pellet rupture and fiber breakage occur in the transition and melt-conveying stages of extrusion. Existing literature focuses on modeling fiber breakage in fully molten stage, and there is a lack of understanding of fiber breakage during the partially molten – transition zone. Moreover, existing theoretical melting models apply to continuous solid melting and cannot be applied to study melting of individual pellets. As fiber length influences the thermo-mechanical properties of the manufactured composites, it is crucial to understand why and how fibers break. The goal of this thesis is to identify the mechanisms of pellet melting and fiber breakage by tracking the motion and heat transfer of an individual pellet. In the first part of this thesis, flow of long discontinuous fiber pellets through a single screw extruder is modeled using discrete element method. Results indicate a translational-conveying motion in the first half of the screw and rotational-conveying motion in the second half. In the second part, a sequentially coupled heat transfer model is developed to capture the melting of a single pellet, occurring mainly through the thermal contacts with the heated screw and barrel surfaces. Partial melting, partial crystallization, and re-melting are captured using melting and crystallization kinetics of semi-crystalline polymers. Heat transfer results indicate that the pellets melt from the outside-in, with a molten shell and a solid core. Based on the average pellet degree of melting, the region of interest for ‘melting zone’ is identified. Finally, some common modes of pellet deformation are identified for closer study.</p><p dir="ltr">Once the common pellet deformation modes are identified, analytical models based on three-point bending loading condition are developed to model pellet deformation. For a partially molten pellet with molten shell and a softer core, temperature dependent properties are used to estimate pellet deflection. The surface fibers are studied closely to identify a fiber separation mechanism. For the separated fibers, a Weibull based strength distribution is used to develop a fiber attrition algorithm for varying end loads. Results indicate that fiber attrition starts as soon as the outer layer of the pellet melts and then continues until the end of the screw. Recommendations for validation experiments and future work are provided in the end.</p>
|
30 |
<b>Application of Terahertz Time-Domain Spectroscopy for sub-surface mechanical characterization of polymers</b>Sushrut Karmarkar (19199968) 24 July 2024 (has links)
<p dir="ltr">Terahertz Time Domain Spectroscopy (THz-TDS) is a powerful non-destructive, non-ionizing spectroscopic technique utilized for evaluating the optical properties of materials within the terahertz frequency range, spanning from 0.1 to 10 terahertz or wavelengths of 300 micron to 3000 micron. It effectively bridges the gap between microwave and infrared regions on the electromagnetic spectrum and its high resolution which avoiding scattering can quantify small changes in dielectric properties of media. It has high transmission through visibly opaque polymers and its ability to record both magnitude and phase information makes it a strong spectroscopic technique with applications in security, chemistry, electronics and telecommunication and non-destructive evaluation methods for solid mechanics.</p><p><br></p><p dir="ltr">This work introduces a polarization-dependent analytical model employing THz-TDS for computing strain in materials. The model establishes a correlation between volumetric strain and the change in time of arrival for a THz pulse, leveraging dielectrostrictive properties, variations in doping particle density, and changes in sample thickness due to Poisson’s effects. Validation of the analytical model is achieved through strain mapping of polydimethylsiloxane doped with highly dielectrostrictive strontium titanate (STO). Two experiments, including open-hole tensile and circular edge-notch specimens, demonstrate the efficacy of the model. Additionally, the study accounts for stress relaxation behavior to ensure measurement accuracy. Comparison of THz strain mapping results with finite element model (FEM) and surface strain measurements using digital image correlation (DIC) method highlights the technique's sensitivity to material features such as particle clumping and edge effects, while showcasing strong agreement with FEM and DIC results.</p><p><br></p><p dir="ltr">This analytical model is further expanded for experimentally mapping subsurface stress and strain in the adhesive layer of a single lap shear test. This in-situ non-destructive testing method pioneers the use of THz-TDS for stress estimation in the adhesive layer. Validation through strain mapping of STO doped Araldite 2011 epoxy adhesive with the analytical formulation is presented.</p><p dir="ltr">Finally, THz-TDS is applied for fracture front mapping in a double cantilever beam test with high-density polyethylene bonded with STO doped Araldite 2011. The phase-dependent model for mapping fracture fronts in the sub-surface adhesive layer involves analyzing convoluted waves due to interface resonances in a multi-layer structure using THz-TDS in transmission mode. The technique evaluates changes in dielectrostrictive properties and degree of separation to delineate fracture fronts. THz image enhancement algorithms facilitate crack front delineation. Error analysis on measured crack thickness is conducted to evaluate signal-to-noise ratio for THz-TDS. Additionally, an approach employing THz-TDS measured fracture propagation information for determining sub-surface stress maps in the adhesive layer and computing fracture toughness (G_Ic) is proposed. This work highlights the versatility and efficacy of THz-TDS in material characterization and stress/strain mapping in solid mechanics applications.</p>
|
Page generated in 0.0481 seconds