• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 75
  • 75
  • 51
  • 36
  • 20
  • 19
  • 15
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

PARAMETRIC DESIGNS AND WEIGHT OPTIMIZATION USING DIRECT AND INDIRECT AERO-STRUCTURE LOAD TRANSFER METHODS

Viraj Dipakbhai Gandhi (7033289) 13 August 2019 (has links)
Within the aerospace design, analysis and optimization community, there is an increasing demand to finalize the preliminary design phase of the wing as quickly as possible without losing much on accuracy. This includes rapid generation of designs, an early adaption of higher fidelity models and automation in structural analysis of the internal structure of the wing. To perform the structural analysis, the aerodynamic load can be transferred to the wing using many different methods. Generally, for preliminary analysis, indirect load transfer method is used and for detailed analysis, direct load transfer method is used. For the indirect load transfer method, load is discretized using shear-moment-torque (SMT) curve and applied to ribs of the wing. For the direct load transfer method, the load is distributed using one-way Fluid-Structure Interaction (FSI) and applied to the skin of the wing. In this research, structural analysis is performed using both methods and the nodal displacement is compared. Further, to optimize the internal structure, iterative changes are made in the number of structural members. To accommodate these changes in geometry as quickly as possible, the parametric design method is used through Engineering SketchPad (ESP). ESP can also provide attributions the geometric feature and generate multi-fidelity models consistently. ESP can generate the Nastran mesh file (.bdf) with the nodes and the elements grouped according to their geometric attributes. In this research, utilizing the attributions and consistency in multi-fidelity models an API is created between ESP and Nastran to automatize the multi-fidelity structural optimization. This API generates the design with appropriate parameters and mesh file using ESP. Through the attribution in the mesh file, the API works as a pre-processor to apply material properties, boundary condition, and optimization parameters. The API sends the mesh file to Nastran and reads the results file to iterate the number of the structural member in design. The result file is also used to transfer the nodal deformation from lower-order fidelity structural models onto the higher-order ones to have multi-fidelity optimization. Here, static structural optimization on the whole wing serves as lower fidelity model and buckling optimization on each stiffened panel serves as higher fidelity model. To further extend this idea, a parametric model of the whole aircraft is also created.<br>
32

EFFECT OF INTERFACE CHEMICAL COMPOSITION ON THE HIGH STRAIN RATE DEPENDENT MECHANICAL BEHAVIOR OF AN ENERGETIC MATERIAL

Chandra Prakash (5930159) 04 January 2019 (has links)
<div>A combined experimental and computational study has been performed in order to understand the effect of interface chemical composition on the shock induced mechanical behavior of an energetic material (EM) system consisting of Hydroxyl-Terminated Polybutadiene (HTPB) binder and an oxidizer, Ammonium Perchlorate (AP), particle embedded in the binder. The current study focuses on the effect of interface chemical composition between the HTPB binder material and the AP particles on the high strain rate mechanical behavior. The HTPB-AP interface chemical composition was changed by adding cyanoethylated polyamine (HX-878 or Tepanol) as a binding agent. A power law viscoplastic constitutive model was fitted to nanoscale impact based experimental stress-strain-strain rate data in order to obtain the constitutive behavior of the HTPBAP interfaces, AP particle, and HTPB binder matrix. An in-situ mechanical Raman spectroscopy framework was used to analyze the effect of binding agent on cohesive separation properties of the HTPB-AP interfaces, AP particle, and HTPB binder matrix. In addition, a combined mechanical Raman spectroscopy and laser impact set up was used to study the effect of strain rate, as well as the interface chemical composition on the interface shock viscosity. Finally, high velocity strain rate impact simulations were performed using an explicit cohesive finite element method framework to predict the effect of strain rate, interface strength, interface friction, and interface shock viscosity on possible strain rate dependent temperature rises at high strain rates approaching shock velocities. </div><div><br></div><div>A modified stress equation was used in the cohesive finite element framework in order to include the effect of shock viscosity on the shock wave rise time and shock pressure during impact loading with strain rates corresponding to shock impact velocities. It is shown that increasing the interface shock viscosity, which can be altered by changing the interface chemical composition, increases the shock wave rise time at the analyzed interfaces. It is shown that the interface shock viscosity also plays an important role in determining the temperature increase within the microstructure. Interface shock viscosity leads to a decrease in the overall density of the possible hot-spots which is caused by the increase in dissipation at the shock front. This increase in shock dissipation is accompanied by a decrease in the both the maximum temperature, as well as the plastic dissipation energy, within the microstructure during shock loading.</div>
33

Structural Optimization Strategies Via Different Optimization And Solver Codes And Aerospace Applications

Ekren, Mustafa 01 December 2008 (has links) (PDF)
In this thesis, structural optimization study is performed by using three different methods. In the first method, optimization is performed using MSC.NASTRAN Optimization Module, a commercial structural analysis program. In the second method, optimization is performed using the optimization code prepared in MATLAB and MSC.NASTRAN as the solver. As the third method, optimization is performed by using the optimization code prepared in MATLAB and analytical equations as the solver. All three methods provide certain advantages in the solution of optimization problems. Therefore, within the context of the thesis these methods are demonstrated and the interface codes specific to the programs used in this thesis are explained in detail. In order to compare the results obtained by the methods, the verification study has been performed on a cantilever beam with rectangular cross-section. In the verification study, the height and width of the cross-section of the beam are taken as the two design parameters. This way it has been possible to show the design space on the two dimensional graph, and it becomes easier to trace the progress of the optimization methods during each step. In the last section structural optimization of a multi-element wing torque box has been performed by the MSC.NASTRAN optimization module. In this section geometric property optimization has been performed for constant tip loading and variable loading along the wing span. In addition, within the context of shape optimization optimum rib placement problem has also been solved.
34

Linear And Nonlinear Progressive Failure Analysis Of Laminated Composite Aerospace Structures

Gunel, Murat 01 January 2011 (has links) (PDF)
This thesis presents a finite element method based comparative study of linear and geometrically non-linear progressive failure analysis of thin walled composite aerospace structures, which are typically subjected to combined in-plane and out-of-plane loadings. Different ply and constituent based failure criteria and material property degradation schemes have been included in a PCL code to be executed in MSC Nastran. As case studies, progressive failure analyses of sample composite laminates with cut-outs under combined loading are executed to study the effect of geometric non-linearity on the first ply failure and progression of failure. Ply and constituent based failure criteria and different material property degradation schemes are also compared in terms of predicting the first ply failure and failure progression. For mode independent failure criteria, a method is proposed for the determination of separate material property degradation factors for fiber and matrix failures which are assumed to occur simultaneously. The results of the present study show that under combined out-of-plane and in-plane loading, linear analysis can significantly underestimate or overestimate the failure progression compared to geometrically non-linear analysis even at low levels of out-of-plane loading.
35

Nonlocal Acoustic Black Hole Metastructures: Achieving Ultralow Frequency and Broadband Vibration Attenuation

Siddharth Nair (7887968) 21 November 2019 (has links)
<div>The development of novel passive techniques for vibration attenuation and control of broadband energy propagation through structural systems have been a major challenge in various complex engineering applications. These passive attenuation and control methodologies are necessary for the efficient performance of advanced lightweight aerospace and mechanical systems operating under extreme working conditions.</div><div><br></div><div>Acoustic Black Holes (ABH) have rapidly emerged as an effective approach to either dissipate or harvest mechanical energy in vibrating thin-walled structures. The characteristic dimension of an ABH, typically its diameter, is strictly connected to the occurrence of a cut-on frequency value below which the ABH is ineffective in absorbing the incoming wave. From a general perspective, lower the cut-on frequency, larger the ABH diameter needed to absorb the incoming wave. Design and manufacturing constraints of the host structure impose stringent limitations on the maximum ABH diameter and hence, limiting the lowest achievable cut-on frequency. The combination of these factors typically result in the poor energy extraction performance at low frequencies.</div><div><br></div><div>This thesis proposes the concept and explores the performance of an intentional nonlocal design for periodic grids of ABHs embedded in thin plates (referred to as ABH metastructures). The nonlocal design is conceived with the twofold objective of lowering the cut-on frequency of the ABH grids and extending the operating frequency range so as to achieve broadband performance. Different nonlocal designs are presented and their dynamic performances are investigated using numerical models. As opposed to the traditional material nonlocality, this thesis introduces nonlocal effects using an intentionally tailored geometric approach. A secondary layer is connected to the load-bearing ABH metastructure base, whose dynamic properties are sought to be controlled.</div><div><br></div><div>A semi-analytical model is also presented in order to characterize the role of nonlocality on the dispersion behavior and its effect on the broadband dynamic response. In linear elasticity, material nonlocality is mathematically represented by a spatially varying attenuation function. As the nonlocal model developed in this thesis follows geometric nonlocality approach, the required nonlocal attenuation factor is found to have a spatial as well as a temporal dependence. The analytical nonlocal constitutive relations in conjunction with the numerically obtained stress-strain parameters are used to identify the dynamic attenuation factor for the nonlocal ABH metastructure. The results provide substantial theoretical and numerical evidence of the potential of engineered nonlocal ABH design as an efficient ultra-low frequency passive attenuation technique for lightweight structures.</div>
36

Multiscale modeling of textile composite structures using mechanics of structure genome and machine learning

Xin Liu (8740443) 24 April 2020 (has links)
<div>Textile composites have been widely used due to the excellent mechanical performance and lower manufacturing costs, but the accurate prediction of the mechanical behaviors of textile composites is still very challenging due to the complexity of the microstructures and boundary conditions. Moreover, there is an unprecedented amount of design options of different textile composites. Therefore, a highly efficient yet accurate approach, which can predict the macroscopic structural performance considering different geometries and materials at subscales, is urgently needed for the structural design using textile composites.</div><div><br></div><div>Mechanics of structure genome (MSG) is used to perform multiscale modeling to predict various performances of textile composite materials and structures. A two-step approach is proposed based on the MSG solid model to compute the elastic properties of different two-dimensional (2D) and three-dimensional (3D) woven composites. The first step computes the effective properties of yarns at the microscale based on the fiber and matric properties. The effective properties of yarns and matrix are then used at the mesoscale to compute the properties of woven composites in the second step. The MSG plate and beam models are applied to thin and slender textile composites, which predict both the structural responses and local stress field. In addition, the MSG theory is extended to consider the pointwise temperature loads by modifying the variational statement of the Helmholtz free energy. Instead of using coefficients of thermal expansions (CTEs), the plate and beam thermal stress resultants derived from the MSG plate and beam models are used to capture the thermal-induced behaviors in thin and slender textile composite structures. Moreover, the MSG theory is developed to consider the viscoelastic behaviors of textile composites based on the quasi-elastic approach. Furthermore, a meso-micro scale coupled model is proposed to study the initial failure of textile composites based on the MSG models which avoids assuming a specific failure criterion for yarns. The MSG plate model uses plate stress resultants to describe the initial failure strength that can capture the stress gradient along the thickness in the thin-ply textile composites. The above developments of MSG theory are validated using high-fidelity 3D finite element analysis (FEA) or experimental data. The results show that MSG achieves the same accuracy of 3D FEA with a significantly improved efficiency.</div><div> </div><div>Taking advantage of the advanced machine learning model, a new yarn failure criterion is constructed based on a deep neural network (DNN) model. A series of microscale failure analysis based on the MSG solid model is performed to provide the training data for the DNN model. The DNN-based failure criterion as well as other traditional failure criteria are used in the mesoscale initial failure analysis of a plain woven composite. The results show that the DNN yarn failure criterion gives a better accuracy than the traditional failure criteria. In addition, the trained model can be used to perform other computational expensive simulations such as predicting the failure envelopes and the progressive failure analysis.</div><div> </div><div>Multiple software packages (i.e., texgen4sc and MSC.Patran/Nastran-SwiftComp GUI) are developed to incorporate the above developments of the MSG models. These software tools can be freely access and download through cdmHUB.org, which provide practical tools to facilitate the design and analysis of textile composite materials and structures.</div>
37

Investigating damage in discontinuous fiber composites through coupled in-situ X-ray tomography experiments and simulations

Imad A Hanhan (8780756) 29 April 2020 (has links)
<div> <div> <div> <p>Composite materials have become widely used in engineering applications, in order to reduce the overall weight of structures while retaining their required strength. Due to their light weight, relatively high stiffness properties, and formability into complex shapes, discontinuous fiber composites are advantageous for producing small and medium size components. However, qualifying their mechanical properties can be expensive, and therefore there is a need to improve predictive capabilities to help reduce the overall cost of large scale testing. To address this challenge, a composite material consisting of discontinuous glass fibers in a polypropylene matrix is studied at the microstructural level through coupled experiments and simulations, in order to uncover the mechanisms that cause microvoids to initiate and progress, as well as certain fiber breakage events to occur, during macroscopic tension. Specifically, this work coupled in-situ X-ray micro computed tomography (μ-CT) experiments with a finite element simulation of the exact microstructure to enable a 3D study that tracked damage initiation and propagation, and computed the local stresses and strains in the microstructure. In order to have a comprehensive 3D understanding of the evolution of the microstructure, high fidelity characterization procedures were developed and applied to the μ-CT images in order to understand the exact morphology of the microstructure. To aid in this process, ModLayer - an interactive image processing tool - was created as a MATLAB executable, and the 3D microstructural feature detection techniques were compared to traditional destructive optical microscopy techniques. For damage initiation, this work showed how high hydrostatic stresses in the matrix can be used as a metric to explain and predict the exact locations of microvoid nucleation within the composite’s microstructure. From a damage propagation standpoint, matrix cracking - a mechanism that has been notably difficult to predict because of its apparent stochastic nature - was studied during damage propagation. The analysis revealed the role of shear stress in fiber mediated flat matrix cracking, and the role of hydrostatic stress in fiber-avoidance conoidal matrix cracking. Overall, a sub-fiber simulation and an in-situ experimental analysis provided the microstructural physical phenomena that govern certain damage initiation and progression mechanisms, further enabling the strength and failure predictions of short fiber thermoplastic composites. </p></div></div></div>
38

METALLIC MATERIALS STRENGTHENING VIA SELECTIVE LASER MELTING EMPLOYING NANOSECOND PULSED LASERS

Danilo de Camargo Branco (14227169) 07 December 2022 (has links)
<p> The Selective Laser Melting (SLM) process is a manufacturing technique that facilitates the  production of metallic parts with complex geometries and reduces both materials waste and lead  time. The high tunability of the process parameters in SLM allows the design of the as-built part’s  characteristics, such as controlled microstructure formation, residual stresses, presence of pores,  and lack of fusion. The main parameter in the SLM process that influences these parts’  characteristics is the transient temperature field resulting from the laser-matter interaction.  Nanosecond pulsed lasers in SLM have the advantage of enabling rapid and localized heating and  cooling that make the formation of ultrafine grains possible. This work shows how different pulse  durations can change the near-surface microstructure and overall mechanical properties of metallic  parts. The nanosecond pulses can melt and resolidify aluminum parts’ near-surface region to form nanograined gradient structures with yield strengths as high as 250.8 MPa and indentation  strengths as high as 725 MPa, which are comparable to some steel's mechanical properties. Knowing that the nanosecond pulsed lasers cause microstructure refinement for high-purity metals,  the microstructure variations effects were also investigated for the cast iron alloy. Cast iron was  used alone and mixed with born or boron nitride powders to induce the precipitation of  strengthening phases only enabled under high cooling rates. Although producing parts with  superior mechanical properties and controlling the precipitation of strengthening phases, the SLM  process with nanosecond pulsed lasers is still accompanied by defects formation, mainly explained  by the large thermal gradients, keyhole effect, reduced melt pool depth, and rapid cooling rates.  Ideally, a smooth heating rate able to sinter powder grains, facilitating the heat flow through the  heat-affected zone, followed by a sharper heating rate that generates a fully molten region, but  minimizes ablation at the same time are targeted to reduce the porosity and lack of fusion. Then, a  sharp cooling rate that can increase the nucleation rate, consequently refining the final  microstructure is targeted in the production of strong materials in SLM with pulsed lasers. This  work is the pioneer in controlling the transient temperature field during the heating and cooling  stages in pulsed laser processing. The temperature field control capability by shaping a nanosecond  laser pulse in the time domain affecting defects formation, residual strains, and microstructure was  achieved, opening a wide research niche in the additive manufacturing field.  </p>
39

Enabling Wing Morphing Through Compliant Multistable Structures

David Matthew Boston (12160490) 12 October 2023 (has links)
<p dir="ltr">The ability to change the shape of aerodynamic surfaces is necessary for modern aircraft, both to provide control while performing maneuvers and to meet the conflicting requirements of various flight conditions such as takeoff/landing and level cruise. These shape changes have traditionally been accomplished through the use of various mechanical devices actuating discrete aerodynamic surfaces, for example ailerons and flaps. Such control surfaces and high-lift devices are generally limited to their specific functionality and create surface discontinuities which increase drag and aircraft noise. Broadly speaking, the design and study of morphing wings typically seeks to improve the performance of aircraft by completing one or more of the following objectives: reducing the drag from discontinuities in the aerodynamic surface of the wing by closing hinge gaps and creating smooth transitions, reducing weight and/or mechanical complexity by integrating mechanism functionality into compliant structures that can bear aerodynamic load and maintain shape adaptability, and providing unique or optimal functionality to the aircraft by allowing it to adjust its aerodynamic shape to meet the needs of various flight conditions with conflicting objectives and constraints.</p><p dir="ltr">The concepts proposed in this work represent potential methods for addressing these objectives. In each case, a compliant structure with multiple stable states is embedded into the wing. Exploiting elastic structural instabilities in this way provides the advantage that a structure can be made relatively stiff while still allowing for large deformations. In the first case, the development of a 3D-printable rib with an embedded bistable element creates a truss-like 2D structure that allows for modification of the airfoil. Switching states of the elements changes their local stiffness, and therefore the global stiffness of the system. By optimizing the topology of the airfoil, a passive deflection of the trailing edge can be leveraged to change the camber to leverage different lift characteristics for varying operating conditions. Primary work on this concept has included the construction of multiple experimental demonstrators for validating the concept through static structural and wind tunnel testing. In the second case, a cellular material has been investigated incorporating a bistable unit cell with a sinusoidal arch. This provides a metamaterial that can exhibit large, reversible deformations with as many stable configurations as there are rows in the honeycomb. This metamaterial is incorporated into a beam-like structure which can serve as a spar for a spanwise morphing wing, providing sufficient bending and torsional stiffness, particularly when utilized at the wing tip. Extending and retracting the wing by switching the states of the honeycomb rows provides a significant change to the wing’s induced drag and wing loading, making it ideal for optimal flight in both loitering and cruising conditions. Contributions to this concept have been the development and characterization of the bistable unit cell and honeycomb, as well as the design and analysis of the metabeam and morphing wing concept.</p>
40

Spatially Targeted Activation of a SMP

Puttmann, John Paul 05 June 2018 (has links)
No description available.

Page generated in 0.0435 seconds