• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Photoluminescence et couplage plasmonique des nanocristaux d'AgInS2-ZnS / Photoluminescence and plasmonic coupling of AgInS2-ZnS nanocristals

Chevallier, Théo 16 October 2015 (has links)
Les nanocristaux d'AgInS2-ZnS sont des candidats prometteurs pour le développement de nano-luminophores non-toxiques et performants. Grâce à leur taille et à leur forte absorption, ces nano-luminophores permettent l'exploitation d'effets nano-optiques pouvant augmenter leur efficacité à l'absorption ou à l'émission. Ce document présente, dans un premier temps, une méthode d'analyse qui couple la mesure du rendement quantique à celle du temps de vie de luminescence et permet l'étude des contributions radiatives et non-radiatives des différents mécanismes de luminescence des nanocristaux d'AgInS2-ZnS. En modifiant la taille, la chimie de surface et la structure du cœur de ces nanocristaux, nous construisons un modèle global expliquant le rôle de leur composition et soulignant l'importance de leur surface. De nouvelles stratégies sont identifiées pour optimiser ces nanomatériaux. Leur application conjointe permet d'envisager des rendements quantiques proches de 90%. Dans un second temps, une méthode de simulation numérique générale a été développée pour prédire l'effet produit par le couplage nano-optique entre une particule plasmonique et un luminophore. Cette méthode a été appliquée au cas des structures cœur/coquille/coquille (métal/isolant/AgInS2-ZnS) et les configurations optimales du système ont été déterminées. Une nanostructure particulièrement performante permettant de combiner les effets du couplage à l'absorption et à l'émission a été identifiée. Une méthode de synthèse de ces nanostructures est développée. Les résultats expérimentaux obtenus sont en accord à la fois avec la compréhension de la fluorescence des nanocristaux d'AgInS2-ZnS et la prédiction obtenue par simulation. / AgInS2-ZnS nanocrystals are promising materials for the development of non-toxic, highly efficient nano-phosphors. Their size and strong absorption allow them to exploit nano-optical effects potentially enhancing both their absorption and emission processes. This work presents a method combining quantum yield measurements with time resolved emission spectroscopy allowing for the study of both radiative and non-radiative properties of each recombination pathways. Modifying the size, surface chemistry, and core structure of the nanocrystals, we construct a global model explaining the role of their composition and emphasizing the critical aspect of their surface. New strategies are identified to increase the internal quantum yield of these materials. Combining these approaches, it is now possible to expect 90% efficiencies. In a second step, a simulation method was developed to predict the nano-optical effects induced by a plasmonic nanostructure on a given phosphor. We applied this method on core/shell/shell (metal/insulator/AgInS2-ZnS) nanostructures and theoretically determined optimal configurations of the system. A particularly efficient nanostructure achieving coupling on both absorbed and emitted light is identified. Hybrid plasmonic nanostructures are synthesized. Their performances are in accordance with both our understanding of the fluorescence mechanisms of AgInS2-ZnS nanocrystals and the predictions made via simulation.
2

Synthesis and Property Characterization of Novel Ternary Semiconductor Nanomaterials

Mao, Baodong 26 June 2012 (has links)
No description available.
3

Développement de matériaux flexibles optiquement actifs basés sur des nanostructures hybrides chirales de modèle d’assemblage moléculaire. / Develpment of optically active flexible materials based on molecular assembly templated chiral hybrid nanostructures.

Pathan, Shaheen 18 July 2019 (has links)
Dans ce travail, nous nous sommes concentrés sur la création de nanostructures chirales optiquement actives en fabriquant des nanohélices de silice fluorescente afin d’obtenir des matériaux souple, nanométriques, optiquement actifs pour des applications en tant que matériaux nanophotoniques. Dans cette optique, des nanohélices de silice chirales ont été utilisées pour greffer et organiser des nanocristaux inorganiques fluorescents achiraux tels que des quantums dots, des chromophores, des molécules et des polymères fluorescents selon différentes approches. Ces hélices inorganiques ont été formées par procédé sol-gel en utilisant des auto-assemblages hélicoïdaux organiques de molécules amphiphiles (amphiphile gemini cationique, avec un contre-ion chiral le tartrate) en tant que modèles. Tout d'abord, la surface de la silice hélicoïdale a été fonctionnalisée par l’APTES afin de greffer des quantum dots inorganiques ZnS-AgInS2 possédant divers ligands. Dans la deuxième partie, le polymère de dérivé anthracénique fluorescent a été organisé par dépôt et adsorption à la surface de silice hélicoïdale. Afin d’étudier les propriétés chiroptiques, différentes caractérisations ont été réalisées telle que la spectroscopie du dichroïsme circulaire (CD) et celle de la luminescence circulairement polarisée (CPL).Le premier chapitre présente l’étude bibliographique sur différents systèmes d’auto-assemblage organiques chiraux et leurs propriétés chiroptiques. Les études sur la formation de systèmes auto-assemblés chiraux dans différentes conditions, leur morphologie structurale, les techniques de fabrication et leurs applications sont discutées suivies de l'utilisation de nanocristaux fluorescents, à savoir, les quantums dots (QD) et les polymères fluorescents achiraux sur lesquels les propriétés chiroptiques peuvent être obtenues et leurs applications dans les nanodispositifs optiques, les capteurs et la nano-photonique.Dans la première partie du deuxième chapitre, différentes techniques de caractérisation telles que le microscope électronique en transmission (TEM), le microscope électronique en transmission haute résolution (HRTEM), la microscopie confocale, la spectroscopie UV-Vis, celle de la fluorescence, du dichroïsme circulaire (CD) et de la luminescence circulairement polarisée (CPL) sont décrites. Dans la deuxième partie, la synthèse du gemini 16-2-16 ainsi que son mécanisme d'auto-assemblage, et sa transformation en réplica de silice par l'intermédiaire de la chimie sol-gel sont décrits. Ces nanohélices de silice sont fonctionnalisées par le 3-aminopropyltriéthoxysilane (APTES). Leur analyse est effectuée par analyse thermogravimétrique (TGA) et analyse élémentaire (EA).Dans le troisième chapitre, nous nous sommes concentrés sur la synthèse de QDs inorganiques ((ZnS)x-1(AgInS2)x) avec différentes compositions rapport molaire et leurs caractérisations par TEM, TGA, EA, spectroscopie infrarouge à transformée de Fourier (FTIR), mesures de potentiel zêta, spectroscopie d'absorption et d'émission. Quatre types de ligands ont été utilisés, par échange de ligand, pour recouvrir les QDs : sulfure d'ammonium (AS), acide 3-mercaptopropionique (MPA), l-cystéine (L-Cys) et l'oleylamine (OLA). Ces QDs sont greffés à la surface des hélices de silice modifiée par de l’amine suite à des interactions ioniques. Diverses techniques ont été utilisées pour confirmer leur greffage à la surface des hélices de silice, et les propriétés optiques ont été étudiées par spectroscopie d'absorption et d'émission. Après le greffage, différents résultats ont été observés selon le ligand utilisé : la caractérisation par TEM montre que les QDs sont greffés à la surface des hélices de silice. [...] / In this work, we focused on the creation of optically active chiral nanostructures by fabricating fluorescent silica nanohelices in order to obtain optically active nanoscale soft materials for applications as nanophotonics materials. For this purpose, silica chiral nanohelices were used for grafting and organizing achiral fluorescent inorganic nanocrystals, dyes, molecules, and fluorescent polymers through different approaches. These inorganic helices were formed via sol-gel method using organic helical self–assemblies of surfactant molecules (achiral and cationic gemini surfactant, with chiral counterion, tartrate) as templates. First, the surface of helical silica was functionalized by APTES in order to graft inorganic quantum dots ZnS-AgInS2 with different capping ligands. In the second part, fluorescent anthracene derivative polymer was organized via deposition and absorption on the surface of helical silica. To investigate the chiroptical properties, circular dichroism and circularly polarised luminescence characterization were performed.In the first chapter, the bibliographic study on different chiral organic self-assembling systems and their chiroptical properties are shown. The studies on the formation of chiral self-assembled systems in different conditions, structural morphology, fabrication techniques and their applications are discussed followed by the use of fluorescent nanocrystals, i.e., quantum dots (QDs) and achiral fluorescent polymers on which chiroptical properties can be obtained and their applications in optical nanodevices, sensors, and nano-photonics.In the first part of the second chapter, different characterisation techniques such as transmission electron microscope (TEM) , high resolution transmission electron microscope (HRTEM), and confocal microscopy, UV-Vis spectroscopy and fluorescence spectroscopies, as well as circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies are described. In the second part, the synthesis of Gemini 16-2-16 as well as their self-assemblies mechanism, and their transformation to silica replica via sol-gel chemistry are described. These silica nanohelices are functionalized by 3-aminopropyltriethoxysilane (APTES). Their analysis is performed by Thermogravimetric analysis (TGA) and elementary analysis (EA).In the third Chapter, we focused on the synthesis of inorganic ((ZnS)x-1(AgInS2)x) QDs with different compositions molar ratio and its characterizations by TEM, TGA, EA, Fourier-transform infrared spectroscopy (FTIR), zeta potential measurements, absorption, and emission spectroscopy. Four types of ligands were used to cap the QDs via phase ligand exchange as follows: ammonium sulphide (AS), 3-mercaptopropionic acid (MPA), l-cysteine (L-Cys) and the fourth one is oleylamine (OLA). These QDs are grafted on the surface of amine-modified silica helices through ionic interaction. Various techniques were used to show the grafting of QDs on the surface of silica helix, and their optical properties were studied using absorption and emission spectroscopy. After grafting, in each case of ligands, different results were observed as follows: The TEM characterization shows that QDs are grafted on the surface of silica helices. In the case of AS-capped QDs, the helical morphology of silica helices after grafting is destroyed; therefore the further ananlysis was not possible. While, in the cases of QDs with three other ligands MPA, OLA and L-cys, dense and homogeneous grafting of the QDs were observed by TEM and the helical morphology was preserved after their grafting. The HRTEM images were taken on the MPA-QDs@silica helices and energy-dispersive x-ray (EDX) analysis was performed in STEM mode, confirming the QDs elements present on the silica surfaces. [...]
4

Studies on AgInS2 Films as Absorber Layer for Heterojunction Solar Cells

Sunil, Maligi Anantha January 2016 (has links) (PDF)
Currently conventional sources like coal, petroleum and natural gas meet the energy requirements of developing and undeveloped countries. Over a period of time there is high risk of these energy sources getting depleted. Hence an alternate source of energy i.e. renewable energy is the need of the hour. The advantages of renewable energy like higher sustainability, lesser maintenance, low cost of operation, and minimal impact on the environment make the role of renewable energy sources significant. Out of the various renewable energy sources like solar energy, wind energy, hydropower, biogas, tidal and geothermal, usage of solar energy is gradually increasing. Among various solar energy sources, Photovoltaics has dominated over the past two decades since it is free clean energy and availability of abundant sunlight on earth. Over the past few decades, thin film solar cells (TFSC) have gained considerable interest as an economically feasible alternative to conventional silicon (Si) photovoltaic devices. TFSCs have the potential to be as efficient as Si solar cells both in terms of conversion efficiency as well as cost. The advantages of TFSC are that they are easy to prepare, lesser thickness, requires lesser materials, light weight, low cost and opto-electronic properties can be tuned by varying the process parameters. The present study is focused on the fabrication of AgInS2/ZnS heterojunction thin film solar cell. AgInS2 absorber layer is deposited using both vacuum (sputtering/sulfurization) and non-vacuum (ultrasonic spray pyrolysis) techniques. ZnS window layer is prepared using thermal evaporation technique, detailed experimental investigation has been conducted and the results have been reported in this work. The thesis is divided into 6 chapters. Chapter 1 gives general introduction about solar cells and working principle of solar cell. It also discusses thin film solar cell technology and its advantages. Layers of thin film solar cell structure, Significance of each layers and possible materials to be used are emphasized. A detailed overview of the available literature on both AgInS2 absorber layer and ZnS window layer has been presented. Based on the literature review, objectives of the present work are defined. Chapter 2 explains the theory and experimental details of deposition techniques used for the growth of AgInS2 and ZnS films. Details of characterization techniques to study film properties are described in detail. Chapter 3 presents a systematic study of AgInS2 thin films deposited by sulfurization of sputtered Ag-In metallic precursors. Initially, AgInS2 films are deposited by varying the substrate temperature and properties of as-deposited films are characterized. Structural, morphological, electrical and optical properties of AgInS2 films are explained. From these studies, samples with better properties at particular substrate temperature are optimized. By fixing the substrate temperature, deposition time of silver is varied by keeping other deposition conditions same and the properties of films are discussed. It was observed that deposition time of silver doesn’t have much impact on structural properties of AgInS2 films. However, opto-electric properties of AgInS2 films are enhanced. Based on characterization studies, deposition time of silver is optimized. Deposition time of indium is varied by keeping substrate temperature and silver deposition to optimized value. The properties of as-deposited films are discussed. Based on the above studies, the optimized p type films have a band gap of 1.64 eV, carrier concentration of 1013 ions/cm3 and Resistivity of order 103 Ω-cm. Chapter 4 presents a systematic study of AgInS2 thin films deposited by ultrasonic spray pyrolysis. AgInS2 films are deposited by varying the substrate temperature and properties of as deposited films are characterized. Structural, morphological, electrical and optical properties of AgInS2 films are explained. From these studies, samples with better properties at particular substrate temperature are optimized. By fixing the substrate temperature, concentration of silver molarity in the precursor solution is varied by keeping other deposition conditions same and the properties of films are discussed. Structural, optical and electrical properties of AgInS2 films are enhanced with the increase in silver concentration. Based on characterization studies, concentration of silver is optimized. Similarly concentration of indium molarity in the precursor solution is varied and the properties of as-deposited films are discussed. Finally, sulfur molarity in the precursor solution is varied and properties of films are discussed. It was observed that increasing sulfur after certain limit does not have any effect on the properties of the films. Based on the above studies, this method resulted in the films with resistivity of 103 Ω-cm and band gap of 1.64 eV. These films showed a carrier concentration of 1013 ions/cm3. Chapter 5 describes the growth of ZnS films using thermal evaporation technique. Influence of thickness on the properties of ZnS films is explained. Samples with good crystallinity, high transmission, and wider gap are selected for device fabrication. This p type layer showed a band gap of 3.52 eV. Solar cells have been fabricated using the AgInS2 films developed by both sputtering and ultrasonic spray pyrolysis techniques. A maximum cell efficiency of 0.92 percent has been achieved for the cell with 0.950 µm thick sputtered AgInS2 layer and thermally evaporated 42 nm thick ZnS layer. In comparison, the ultrasonic spray pyrolysis deposited films gave an efficiency of 0.54 percent. These values are comparable to those mentioned in a couple of reports earlier. Chapter 6 summarizes the conclusions drawn from the present investigations and scope of future work is suggested.

Page generated in 0.0165 seconds