• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 42
  • 15
  • 10
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 149
  • 149
  • 47
  • 39
  • 33
  • 24
  • 23
  • 21
  • 21
  • 18
  • 18
  • 16
  • 16
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Atividade das enzimas redutase do nitrato e glutamina sintetase em cafeeiro arábica. / Activity of the nitrate reductase and glutamine synthetase enzymes in arabic coffee.

Andrade Netto, José Fernandes de 14 April 2005 (has links)
O objetivo deste trabalho foi avaliar a atividade das enzimas redutase do nitrato (RN) e glutamina sintetase (GS) em mudas de Coffea arabica L cv Obatã IAC 1669-20 em função dos atributos ecofisiológicos. O experimento foi conduzido em casa de vegetação no Laboratório de Biotecnologia Agrícola do Departamento de Ciências Biológicas da Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo. Para a realização do experimento adotou-se o delineamento inteiramente casualizado com dois tratamentos: T1 (100% de luz) e T2 (50% de luz) e cinco repetições. As determinações das atividades enzimáticas foram feitas às 07:00 h; 12:00 h; 17:00 h e 22:00 h, bem como dos atributos ecofisiológicos: temperatura atmosférica; temperatura foliar; radiação fotossinteticamente ativa; condutância estomática; taxa de fotossíntese líquida; taxa de transpiração e proteína total solúvel. O nível de exposição à luminosidade altera a atividade da redutase do nitrato (RN), cujo valor foi menor nas plantas a pleno sol às 12:00 h e 17:00 h. A saturação lumínica e a maior temperatura foliar em relação ao ambiente, às 12:00 h, diminuiu as trocas gasosas (CO2 e vapor d’água) e a atividade da RN. Ao longo do período luminoso, independentemente do nível de exposição à luminosidade, decresceu a atividade da glutamina sintetase (GS). A disponibilidade de amônio proveniente da ação da RN no período noturno elevou a atividade da GS, enquanto a fotorrespiração, por hipótese, forneceu o substrato (NH4 +) para a atividade dessa enzima (GS) nas plantas a pleno sol ao meio dia. A inibição da redutase do nitrato (RN) no cafeeiro proporcionada pela fotorrespiração se dá, por hipótese, em resposta a produção de glutamina por meio da atividade da glutamina sintetase (GS). / The aim of this work was to evaluate the activity of the enzymes nitrate reductase (RN) and glutamine synthetase (GS) in seedlings of Coffea arabica L cv Obatã IAC 1669 - 20 in face of the eco-physiological attributes. The experiment was conducted in a greenhouse at the Laboratory of Agricultural Biotechnology in the Biological Science Department of the Superior School of Agriculture "Luiz de Queiroz", São Paulo University. The completely randomized experimental design was utilized for the experiment with two treatments: T1 (100% of light) e T2 (50% of light), each on made up of five replicates. The enzymatic activities and eco-physiological attributes determinations such as air temperature, leaf temperature, photosynthetically active radiation, stomatal conductance, net photosynthesis rate, transpiration rate and total soluble protein were made at 7:00 AM, 12:00 AM, 5:00 PM and 10:00 PM. The level of radiation exposition changes the nitrate reductase activity, whose value was smaller in plants at full sun at 12:00 AM and 5:00 PM. The light saturation and the higher leaf temperature in relation to the environment, at 12:00 AM, reduced the gas exchanges (CO2 and water vapor) and RN activity. Along the light period, independently of radiation exposition level, the activity of the glutamine synthetase decreased. The availability of ammonium provided by RN during dark period, independently of the treatments, increase the GS activity, while photorespiration, hypothetically, supplied the substrate (NH4+) to the GS action in plants under full sun at 12:00 AM. The RN inhibition in coffee plants provides the photorespiration occurred in response to the glutamine production through the GS activity.
92

Prognóstico das variáveis meteorológicas e da evapotranspiração de referência com o modelo de previsão do tempo GFS/NCEP / Prediction of meteorological variables and reference evapotranspiration with GFS/NCEP weather forecast model

Celso Luís de Oliveira Filho 31 July 2007 (has links)
Avaliou-se o desempenho de um modelo numérico de previsão do tempo (GFS - Global Forecast System – antigo AVN – AViatioN model - do Centro Nacional para Previsão Ambiental – NCEP) no prognóstico de variáveis meteorológicas temperatura, déficit de pressão de vapor do ar, saldo de radiação e velocidade do vento, e da evapotranspiração de referência calculada pelos métodos de Thornthwaite (1948) e de Penman-Monteith (Allen et al., 1998). O desempenho foi avaliado por comparação com dados provenientes de uma estação meteorológica, situada em Piracicaba, São Paulo. A temperatura e o déficit de pressão de vapor do ar foram os elementos melhor prognosticados, com desempenho "muito bom" e "bom", de acordo com o índice de desempenho proposto por Camargo e Sentelhas (1997), para no máximo quatro e três dia de antecedência, respectivamente, durante o período seco. Para o período úmido, somente o prognóstico do déficit de pressão de vapor do ar para o primeiro dia mostrou-se "bom". Os prognósticos de saldo de radiação e velocidade do vento foram ruins para ambos os períodos. Em decorrência do bom desempenho do modelo para prognosticar a temperatura, verificou-se que a estimativa de ETo pelo método de Thornthwaite teve boa concordância com o calculado a partir dos dados da estação meteorológica, com antecedência de até três dias para o período seco. Para o úmido, este fato foi observado apenas para o primeiro dia de antecedência. A concordância entre os valores estimados pelo modelo e a partir da estação para o método de Penman-Monteith foi muito baixa, em conseqüência do desempenho do modelo de previsão do tempo em prognosticar o saldo de radiação e a velocidade do vento. / The performance of a numeric weather forecast model (GFS- Forecast System, former AVN - AvatioN model, National Center for Environmental Prediction-NCEP) was evaluated for predicting weather variables, like air temperature and vapor pressure deficit, net radiation and wind speed, as well as reference evapotranspiration calculated by Thornthwaite (1948) and Penman-Monteith (Allen et al., 1948) methods, by the comparison with data obtained by an automatic weather station, in Piracicaba, State of São Paulo, Brazil. Temperature and vapor pressure deficit were the variables predicted with the best accuracy, with a "very good" and "good" performance, according to the index of confidence proposed by Camargo and Sentelhas (1997), for the maximum of four and three days in advance, respectively, during the dry season. For the wet season, only vapor pressure deficit was predicted with a "good" performance of the model. The predictions of net radiation and wind speed were very poor for both seasons. As the weather forecast model predicted temperature well, ETo estimated by Thornthwaite method showed a good agreement with ETo values estimated by observed data from the weather station, with till three days in advance for the dry season. For the wet season, such agreement was observed just for one day in advance. When ETo estimated by Penman-Monteith method with data from the weather forecast model and from weather station were compared any agreement was observed, which was caused by the poor performance of the numeric weather forecast model to predict net radiation and wind speed.
93

High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, Canada

Bonnaventure, Philip P. 19 April 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline. Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas. The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
94

Non-contact measurement of soil moisture content using thermal infrared sensor and weather variables

Alshikaili, Talal 19 March 2007
The use of remote sensing technology has made it possible for the non-contact measurement of soil moisture content (SMC). Many remote sensing techniques can be used such as microwave sensors, electromagnetic waves sensors, capacitance, and thermal infrared sensors. Some of those techniques are constrained by their high fabrication cost, operation cost, size, or complexity. In this study, a thermal infrared technique was used to predict soil moisture content with the aid of using weather meteorological variables. <p>The measured variables in the experiment were soil moisture content (%SMC), soil surface temperature (Ts) measured using thermocouples, air temperature (Ta), relative humidity (RH), solar radiation (SR), and wind speed (WS). The experiment was carried out for a total of 12 soil samples of two soil types (clay/sand) and two compaction levels (compacted/non-compacted). After data analysis, calibration models relating soil moisture content (SMC) to differential temperature (Td), relative humidity (RH), solar radiation (SR), and wind speed (WS) were generated using stepwise multiple linear regression of the calibration data set. The performance of the models was evaluated using validation data. Four mathematical models of predicting soil moisture content were generated for each soil type and configuration using the calibration data set. Among the four models, the best model for each soil type and configuration was determined by comparing root mean of squared errors of calibration (RMSEC) and root mean of squared errors of validation (RMSEV) values. Furthermore, a calibration model for the thermal infrared sensor was developed to determine the corrected soil surface temperature as measured by the sensor (Tir) instead of using the thermocouples. The performance of the thermal infrared sensor to predict soil moisture content was then tested for sand compacted and sand non-compacted soils and compared to the predictive performance of the thermocouples. This was achieved by using the measured soil surface temperature by the sensor (Tir), instead of the measured soil surface temperature using the thermocouples to determine the soil-minus-air temperature (Td). The sensor showed comparable prediction performance, relative to thermocouples. <p>Overall, the models developed in this study showed high prediction performance when tested with the validation data set. The best models to predict SMC for compacted clay soil, non-compacted clay soil, and compacted sandy soil were three-variable models containing three predictive variables; Td, RH, and SR. On the other hand, the best model to predict SMC for compacted sandy soil was a two-variable model containing Td, and RH. The results showed that the prediction performance of models for predicting SMC for the sandy soils was superior to those of clay soils.
95

High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, Canada

Bonnaventure, Philip P. 19 April 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline. Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas. The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
96

Non-contact measurement of soil moisture content using thermal infrared sensor and weather variables

Alshikaili, Talal 19 March 2007 (has links)
The use of remote sensing technology has made it possible for the non-contact measurement of soil moisture content (SMC). Many remote sensing techniques can be used such as microwave sensors, electromagnetic waves sensors, capacitance, and thermal infrared sensors. Some of those techniques are constrained by their high fabrication cost, operation cost, size, or complexity. In this study, a thermal infrared technique was used to predict soil moisture content with the aid of using weather meteorological variables. <p>The measured variables in the experiment were soil moisture content (%SMC), soil surface temperature (Ts) measured using thermocouples, air temperature (Ta), relative humidity (RH), solar radiation (SR), and wind speed (WS). The experiment was carried out for a total of 12 soil samples of two soil types (clay/sand) and two compaction levels (compacted/non-compacted). After data analysis, calibration models relating soil moisture content (SMC) to differential temperature (Td), relative humidity (RH), solar radiation (SR), and wind speed (WS) were generated using stepwise multiple linear regression of the calibration data set. The performance of the models was evaluated using validation data. Four mathematical models of predicting soil moisture content were generated for each soil type and configuration using the calibration data set. Among the four models, the best model for each soil type and configuration was determined by comparing root mean of squared errors of calibration (RMSEC) and root mean of squared errors of validation (RMSEV) values. Furthermore, a calibration model for the thermal infrared sensor was developed to determine the corrected soil surface temperature as measured by the sensor (Tir) instead of using the thermocouples. The performance of the thermal infrared sensor to predict soil moisture content was then tested for sand compacted and sand non-compacted soils and compared to the predictive performance of the thermocouples. This was achieved by using the measured soil surface temperature by the sensor (Tir), instead of the measured soil surface temperature using the thermocouples to determine the soil-minus-air temperature (Td). The sensor showed comparable prediction performance, relative to thermocouples. <p>Overall, the models developed in this study showed high prediction performance when tested with the validation data set. The best models to predict SMC for compacted clay soil, non-compacted clay soil, and compacted sandy soil were three-variable models containing three predictive variables; Td, RH, and SR. On the other hand, the best model to predict SMC for compacted sandy soil was a two-variable model containing Td, and RH. The results showed that the prediction performance of models for predicting SMC for the sandy soils was superior to those of clay soils.
97

Plant respiration and climate change effects

Bruhn, Dan. January 2002 (has links) (PDF)
Ph.d.-afhandling. Københavns Universitet, 2002. / Haves også i trykt udg.
98

High-resolution Permafrost Distribution Modelling for the Central and Southern Yukon, and Northwestern British Columbia, Canada

Bonnaventure, Philip P. 19 April 2011 (has links)
Basal Temperature of Snow (BTS) measurements were used as the primary inputs to a high resolution (30 x 30 m grid cells) empirical-statistical regional permafrost probability model for the southern and central Yukon, and northernmost British Columbia (59° - 65°N). Data from seven individual study areas distributed across the region were combined using a blended distance decay technique, with an eighth area used for validation. The model predictions are reasonably consistent with previous permafrost maps for the area with some notable differences and a much higher level of detail. The modelling gives an overall permafrost probability of 52%. North of 62°N, permafrost becomes more extensive in the lowland areas whereas farther south permafrost is typically common only above treeline. Significant differences exist between the mountain environments of the Yukon and the Swiss Alps where the BTS method originated and as a result different modelling approaches had to be developed. This work therefore: (1) develops additional explanatory variables for permafrost probability modelling, the most notable of which is equivalent elevation, (2) confirms the use of ground truthing as a requirement for empirical-statistical modelling in the Yukon and (3) uses a combination of models for the region in order to spatially predict between study areas. The results of this thesis will be of use to linear infrastructure route-planning, geohazard assessment and climate change adaptation strategies. Future work employing the model will allow the effects of scenario-based climate warming to be examined.
99

Carbon dioxide and water exchange in a boreal forest in relation to weather and season /

Morén, Ann-Sofie, January 1900 (has links) (PDF)
Diss. (sammanfattning) Uppsala : Sveriges lantbruksuniv. / Härtill 6 uppsatser.
100

INFLUÊNCIA DA TEMPERATURA DO AR NA EMISSÃO DE FOLHAS, RAMIFICAÇÕES E FLORES EM HÍBRIDOS DE MELANCIA / INFLUENCE OF AIR TEMPERATURE IN LEAF DEVELOPMENT, VINES AND FLOWERS IN HYBRID WATERMELONS

Nora, Francisco Ernesto Dalla 27 April 2016 (has links)
Fundação de Amparo a Pesquisa no Estado do Rio Grande do Sul / The aim of this study was to evaluate the growth and development of watermelon hybrids in relation to air temperature by obtaining the thermal time for vegetative and reproductive subperiods for the hybrid cultivar Manchester and Top Gun, both early cycle were used. The experiment was conducted in an area belonging to the Federal University of Santa Maria/Campus Frederico Westphalen-RS, from September to December 2014. During the execution of the experiment, evaluations were performed every two days for the following characteristics: emission nodes/leaves, development of primary and secondary vines, and issuance of staminate flowers and pistillate. The spacing used was 1.5 m between plants and 3.0 m between rows of the crop. The values obtained for the evaluated criteria differ significantly where the hybrid Manchester demonstrated superiority over the hybrid Top Gun which presented average values of plastichrone with 16.6 °C day-1 node, the amount of nodes on the main vine was 45.8 nodes, the thermal sum for the issuance of secondary vines was 18.1 °C growing degree days-1 vine, and the final number of secondary vines and vines of 26.6, and a total number of growing degree days for staminate flower emission of 9.6 °C day-1 flower. The hybrid Top Gun was superior to the hybrid Manchester for the final number of primary vines, emitting on average 14.6 vines per plant and an accumulated growing degree day for pistillate flower emission of 51.9 °C day-1 flower. In the variables of thermal time on the main stem, primary stem, and growing degree day, the thermal time for primary and secondary vines, final number of staminate flowers and pistillate hybrids showed no statistical difference in mean values. / O objetivo deste estudo foi avaliar a velocidade de emissão de órgãos vegetativos e reprodutivos para dois híbridos de melancieira em relação a temperatura do ar, com a obtenção da soma térmica acumulada. Foram utilizados os híbridos Manchester e Top Gun, ambos de ciclo precoce. O experimento foi conduzido em área pertencente à Universidade Federal de Santa Maria/Campus Frederico Westphalen RS, no período de setembro a dezembro de 2014. Durante a execução do experimento, foram realizadas avaliações a cada dois dias sobre as seguintes características: emissão de nós, emissão de ramificações primárias, secundárias, emissão de flores estaminadas e pistiladas. As variáveis foram estimadas pelo inverso do coeficiente angular da regressão linear do órgão visível com a soma térmica diária acumulada a partir do transplante para o campo. Os resultados obtidos para os critérios avaliados diferiram significativamente, sendo que o híbrido Manchester demonstrou superioridade em relação ao híbrido Top Gun apresentando valores médios de plastocrono com 16,6 ºC dia nó-1, número final de nó na haste principal de 45,8 nós, soma térmica para emissão de ramificação secundária de 18,1 ºC dia-1 ramificação, número final de ramificações secundárias de 26,6 ramificações e soma térmica para emissão de flor estaminada de 9,6 ºC dia-1 flor. O híbrido Top Gun foi superior ao híbrido Manchester para as variáveis número final de ramificações primárias emitindo em média 14,6 ramificações por planta e soma térmica acumuladas para emissão de flor pistilada de 51,9 ºC dia flor-1. Nas variáveis soma térmica acumulada na haste principal, soma térmica para ramificação primária, soma térmica acumulada para ramificações primárias e secundárias, número final de flores estaminadas e pistiladas os híbridos não apresentaram diferenciação estatística dos valores médios.

Page generated in 0.1158 seconds