Spelling suggestions: "subject:"aktivierung kleine biomoleküle"" "subject:"aktivierung kleine gasmoleküle""
1 |
Synthesis and Application of Phosphonium Salts as Lewis Acid CatalystsGuo, Chunxiang 11 August 2021 (has links)
In the first part of this work, a convenient and high yielding synthetic strategy was developed to approach highly electrophilic fluorophosphonium cations as triflate salts. Through in situ electrophilic fluorination of phosphanes with commercially available bench-stable N-fluorobenzenesulfonimide (NFSI), followed by subsequent methylation of the [N(PhSO2)2]- anion with MeOTf, a library of mono-, di- and tri- cationic fluorophosphonium triflates were obtained in excellent yields. The Lewis acidities of all synthesized fluorophosphonium triflates salts were evaluated by both theoretical and experimental methods. These fluorophosphonium triflates have been develop as catalysts for the conversation of formamides into N-sulfonyl formamidines.
CHAPTER II of this work focus on developing electrophilic fluorophosphonium cation as Lewis acid pedant in both inter- and intra- molecular FLP systems, as well as exploring their application in small molecular activation and functionalization, such as reversible CO2 sequestration and binding of carbonyls, nitriles and acetylenes.
CHAPTER III of this thesis reports on the reaction of electrophilic fluorophosphonium triflates with trimethylsilyl nucleophiles (Me3SiX, X = CN, N3), which selectively yields either pseudohalo-substituted flurophosphoranes or pseudohalo-substituted phosphonium cations.:1. Introduction 1
1.1. Frustrated Lewis Pair chemistry 2
1.2. Phosphorus derivatives as strong Lewis acids 6
2. Objective 11
3. CHAPTER I: Synthesis of fluorophosphonium triflate salts and application as catalyst 15
3.1. Electrophilic fluorination of phosphanes: a convenient approach to electrophilic fluorophosphonium cations 15
3.2. Fluorophilicities and Lewis acidities of the obtained fluorophosphonium derivatives 23
3.2.1. Evaluation of fluorophilicities and Lewis acidities of the obtained fluorophosphonium cations 24
3.2.2. Reactions of fluorophosphonium salts with selected formamides. 27
3.2.3. Reactions of fluorophosphonium salts with selected urea derivatives 31
3.3. Transformation of formamides to N-sulfonyl formamidines using fluorophosphonium triflates as active catalysts 34
4. CHAPTER II: Bifunctional electrophilic fluorophosphonium triflates as intramolecular Frustrated Lewis Pairs 45
5. CHAPTER III: Reaction of fluorophosphonium triflate salts with trimethylsilyl nucleophiles 63
6. Summary 73
7. Perspective 77
8. Experimental section 80
8.1. Materials and methods 80
8.2. Experimental details for CHAPTER I 82
8.2.1. Preparation of imidazoliumyl-substituted phosphanes. 82
8.2.1.1. Preparation of [Ph2LcMeP][OTf] 82
8.2.1.2. Preparation of [Ph2LciPrP][OTf] 83
8.2.1.3. Preparation of [(C6F5)2LcMeP][OTf] 83
8.2.1.4. Preparation of [(C6F5)2LciPrP][OTf] 84
8.2.1.5. Preparation of [PhLcMe2P][OTf]2 85
8.2.1.6. Preparation of [PhLciPr2P][OTf]2 85
8.2.2. Preparation of fluorophosphonium bis(phenylsulfonyl)amide salts 86
8.2.2.1. Preparation of [36(NSI)]. 86
8.2.2.2. Preparation of 58a[NSI] 87
8.2.2.3. Preparation of 58b[N(SO2Ph)2] 88
8.2.3. Preparation of fluorophosphonium triflate salts 88
8.2.3.1. Preparation of 36[OTf] 89
8.2.3.2. Preparation of 36[H(OTf)2] 89
8.2.3.3. Preparation of 58a[OTf] 90
8.2.3.4. Preparation of 58b[OTf] 91
8.2.3.5. Preparation of 58c[OTf] 91
8.2.3.6. Preparation of 59a[OTf] 92
8.2.3.7. Preparation of 59b[OTf] 93
8.2.3.8. Preparation of 60Mea[OTf]2 94
8.2.3.9. Preparation of 60iPra[OTf]2 94
8.2.2.10. Preparation of 60Meb[OTf]2 95
8.2.3.11. Preparation of 60iPrb[OTf]2 96
8.2.3.12. Preparation of 61Me[OTf]3 97
8.2.3.13. Preparation of 61iPr[OTf]3 97
8.2.4. Reaction of fluorophosphonium triflate salts with nucleophiles 98
8.2.4.1. Preparation of 62a[OTf] 98
8.2.4.2. Preparation of 62b[OTf] 99
8.2.4.3. Preparation of 62c[OTf] 100
8.2.4.4. Preparation of 63 100
8.2.4.5. Preparation of 65 101
8.2.4.6. Preparation of 69a[OTf] 102
8.2.4.7. Preparation of 69b[OTf] 103
8.2.5. Synthesis of H[N(SO2R)(SO2Ph)] and corresponding sodium salt 103
8.2.5.1. General procedure for the formation of N-sulfonyl-sulfonamides 103
8.2.5.2. General procedure for the formation of sodium bis(sulfonyl)amides 104
8.2.5.3. Preparation of HN(SO2Ph)2, Na[N(SO2Ph)2] and [nBu4N][N(SO2Ph)2] 104
8.2.5.4. Preparation of 81a and 82a 105
8.2.5.5. Preparation of 81b and 82b 106
8.2.5.6. Preparation of 81c and 82c 106
8.2.5.7. Preparation of 81d and 82d 107
8.2.5.8. Preparation of 81e and 82e 108
8.2.5.9. Preparation of 81f and 82f 108
8.2.5.10. Preparation of 81g and 82g 109
8.2.5.11. Preparation of 81h and 82h 109
8.2.6. Synthesis of N-sulfonyl amidines 110
8.2.6.1. General procedure for the catalytic formation of N-sulfonyl amidines 110
8.2.6.2. Preparation of 64 110
8.2.6.3. Preparation of 72 111
8.2.6.4. Preparation of 73 112
8.2.6.5. Preparation of 74 112
8.2.6.6. Preparation of 75 113
8.2.6.7. Preparation of 76 114
8.2.6.8. Preparation of 77 114
8.2.6.9. Preparation of 78 115
8.2.6.10. Preparation of 79 116
8.2.6.11. Preparation of 80a,b 116
8.2.6.12. Preparation of 83b 117
8.2.6.13. Preparation of 83c 118
8.2.6.14. Preparation of 83d 119
8.2.6.15. Preparation of 83e 119
8.2.6.16. Preparation of 83f 120
8.2.6.17. Preparation of 83g 121
8.2.6.18. Preparation of 83h 122
8.3. Experimental details for CHAPTER II 123
8.3.1. Preparation of N-containing phosphanes 123
8.3.1.1. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)pyridine 123
8.3.1.2. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-1-methylimidazole 124
8.3.1.3. Preparation of 2-(bis(perfluorophenyl)phosphaneyl)-N,N-dimethylaniline 124
8.3.2. Preparation of N/P Frustrated Lewis Pairs 125
8.3.2.1. General procedure for the synthesis of N/P-Frustrated Lewis pairs 125
8.3.2.2. Preparation of 85[OTf] 126
8.3.2.3. Preparation of 86[OTf] 126
8.3.2.4. Preparation of 87[OTf] 127
8.3.2.5. Preparation of 88[OTf] 128
8.3.2.6. Preparation of 89[OTf] 129
8.3.3. Synthesis of compound 84[OTf] 130
8.3.4. Reaction of N/P FLP with carbonyls, nitriles or acetylenes 131
8.3.4.1. General reaction conditions for the reaction of N/P FLP with carbonyls and nitriles 131
8.3.4.2. Preparation of 90[OTf] 131
8.3.4.3. Preparation of 91[OTf] 132
8.3.4.4. Preparation of 92[OTf] 133
8.3.4.5. Preparation of 93a[OTf] 134
8.3.4.6. Preparation of 93b[OTf] 134
8.3.4.7. Preparation of 94[OTf] 135
8.3.4.8. Preparation of 95[OTf] 136
8.3.4.9. Preparation of 96[OTf] 137
8.3.4.10. Preparation of 97a[OTf] 138
8.3.4.11. Preparation of 97b[OTf] 139
8.3.4.12. Preparation of 99a[OTf]2 140
8.3.4.13 Preparation of 100b[OTf] 141
8.3.5. Reaction of N/P FLPs with CO2 142
8.3.5.1 Reaction of 85[OTf] with CO2 142
8.3.5.2 Reaction of 86[OTf] with CO2 142
8.4. Experimental details for CHAPTER III 144
8.4.1 Synthesis of 105a,b[OTf] and 106c 144
8.4.1.1. General procedure for the reaction of fluorophosphonium triflate with Me3SiCN 144
8.4.1.2. Preparation of 105a[OTf] 144
8.4.1.3. Preparation of 105b[OTf] 145
8.4.1.4. Preparation of 106c 145
8.4.2. Reaction of fluorophosphonium triflate salt with Me3SiN3 146
8.4.2.1. General procedure for preparation of azidofluorophosphorane 146
8.4.2.2. General procedure for preparation of azidofluorophosphonium triflate salts 146
8.4.2.3. Preparation of 107a[OTf] 146
8.4.2.4. Preparation of 107b[OTf] 147
8.4.2.5. Preparation of 107c[OTf] 147
8.4.2.6. Preparation of 108c 148
8.4.2.7. Preparation of 109[OTf] 149
8.4.2.8. Preparation of 110[OTf]2 149
8.4.2.9. Preparation of 113[OTf]3 150
8.4.2.10. Preparation of 114[OTf] 151
8.4.2.11. Preparation of 115[OTf] 151
8.4.2.12. Preparation of 116[OTf] 152
8.4.3 Transformation of azido-fluorophosphorane under heating conditions 153
8.4.3.1 Preparation of 118 153
8.4.3.2 Preparation of 120a,b[OTf] 154
9. Crystallographic details 156
9.1. X-ray Diffraction refinements 156
9.2. Crystallographic details for CHAPTER I 157
9.3. Crystallographic details for CHAPTER II 169
9.4. Crystallographic details for CHAPTER III 176
10. Computational methods 179
11. Abbreviations 181
12. Nomenclature of compounds according to IUPAC recommendations 183
13. References 187
14. Acknowledgment 205
15. Publications and conference contributions 207
15.1. Peer-reviewed publication 207
15.2. Poster presentations 207
Versicherung 209
Erklärung 209
|
2 |
Synthesis of Bioinspired Dioxygen Reduction Catalysts Involving Mono and Polynuclear Late Transition Metal Complexes and Spectroscopic Trapping of Reactive IntermediatesChandra, Anirban 24 March 2021 (has links)
Die selektive Funktionalisierung nicht aktivierter C−H-Bindungen und die Disauerstoffreduktionsreaktion (ORR) sind extrem wichtig bei der Beschäftigung mit verschiedenen technologischen Problemstellungen wie der Energiekrise, der Synthese kommerziell relevanter organischer Verbindungen usw. Die Nutzung molekularen Sauerstoffs als reichlich vorhandenes und umweltverträgliches Oxidationsmittel ist von großem Interesse in der Entwicklung bioinspirierter synthetischer Oxidationskatalysatoren. Die katalytische Vier-Elektronen-Reduktion von Disauerstoff zu Wasser erlangte auch immer größere Aufmerksamkeit wegen ihrer Bedeutung in der Brennstoffzellentechnologie. Natürlich vorkommende Metalloenzyme aktivieren Disauerstoff durch die Nutzung günstiger Übergangsmetalle (z.B. Eisen, Nickel, Mangan und Kupfer) und weisen diverse oxidative Reaktivitäten auf. Des Weiteren werden solche Reaktionen unter Umgebungsbedingungen mit hoher Effizienz und Stereoselektivität durchgeführt. Deshalb kann die Isolierung und Charakterisierung hochvalenter Metall-Disauerstoff-Intermediate (wie Metall-Superoxo-, Metall-Peroxo-, Metall-Hydroperoxo- und Metall-Oxo-Verbindungen) eine Menge nützlicher Informationen über die Reaktionsmechanismen liefern und daher hilfreich für die zukünftige Entwicklung effizienterer Katalysatoren sein. Diese Arbeit hat die Chemie verschiedener Metall-Disauerstoff-Intermediate von end-on-1,2-Peroxo-dicobalt(III)-Spezies bis zu Superoxo-nickel(II)-Kernen erforscht. Detaillierte spektroskopische Untersuchungen sowie Reaktivitätsstudien der Intermediate wurden durchgeführt, um den Zusammenhang zwischen ihrer elektronischen Struktur und ihren Reaktivitätsmustern aufzuklären. In meiner Arbeit untersuchte ich den Effekt der ‚Struktur-Aktivität-Beziehung‘ verschiedener Metall-Disauerstoff-Intermediate gegenüber exogener Substrate. Diese Arbeit zeigte auch den Einfluss des Designs geeigneter Liganden auf das Verhalten eines gegebenen reaktiven Metall-Disauerstoff-Systems. / Selective functionalization of unactivated C−H bonds and dioxygen reduction reaction (ORR) are extremely important in the context of addressing various technological issues such as energy-crisis, synthesis of commercially important organic compounds, etc. The utilization of molecular oxygen as an abundant and environmentally benign oxidant is of great interest in the design of bioinspired synthetic oxidation catalysts. The catalytic four-electron reduction of dioxygen to water has also merited increasing attention because of its relevance to fuel cell technology. Naturally occurring metalloenzymes activate dioxygen by employing cheap transition metals (e.g. iron, nickel, manganese, and copper) and exhibit diverse oxidative reactivities. Moreover, such reactions are carried out under ambient conditions with high efficiency and stereospecificity. Therefore, the isolation and characterization of the high-valent metal-dioxygen intermediates (such as metal-superoxo, -peroxo, -hydroperoxo, and -oxo can provide a lot of useful information about the reaction mechanisms and is therefore helpful for the future design of more efficient catalysts.
This thesis has explored the chemistry of different metal-dioxygen intermediates ranging from bridging end-on μ-1,2-peroxo-dicobalt(III) species to nickel(II)-superoxo cores. Detailed spectroscopic and reactivity studies of the intermediates have been performed to reveal the correlations between their electronic structures and reactivity patterns. In my present thesis, I investigated the effect of the ‘structure-activity relationship’ of different metal-dioxygen intermediates towards exogenous substrates. This thesis also demonstrated the impact of suitable ligand design on the behaviour of a given metal-dioxygen reactive system.
|
3 |
Synthese intramolekularer Frustrierter Lewis-Paare mit aluminiumbasierten Akzeptoreinheiten und ihre Reaktivität gegenüber kleinen MolekülenFedermann, Patrick 28 February 2023 (has links)
Frustrierte Lewis-Paare (FLPs) bestehen aus einer Lewis-Säure und -Base, die an der gegenseitigen Neutralisierung gehindert werden und so erfolgreich zur Aktivierung kleiner Moleküle eingesetzt werden konnten. Als Elektronenpaarakzeptoren wurden bislang vorwiegend Borane erforscht. Aluminiumbasierte Systeme, insbesondere intramolekularer Art, sind trotz ihrer ausgeprägten Lewis-Acidität unterrepräsentiert. In der vorliegenden Dissertation wurde untersucht, welche Syntheserouten sich zur Darstellung intramolekularer Phosphor/Aluminium-FLPs mit großer räumlicher Trennung der Lewis-Funktionen eignen und welche Reaktivität diese aufweisen. An einem Xanthenrückgrat mit Diphenylphosphineinheit konnten durch Lithiierung und Metathese Dimesityl- und Bis(pentafluorphenyl)alaneinheiten eingeführt werden und die resultierenden P/Al-FLPs sind in der Lage, Tetrahydrofuran zu öffnen. Das perfluorierte Derivat wies dabei eine zehnfach höhere Geschwindigkeitskonstante der Ringöffnungsreaktion auf. Mittels quantenchemischer Rechnungen konnte dies auf die gesteigerte Lewis-Acidität des Aluminiumzentrums zurückgeführt werden. Durch den Zinn-Aluminium-Austausch eines trimethylstannylierten Xanthenvorläufers mit Methylaluminiumverbindungen konnten P/Al-FLPs aufgebaut werden, die durch ein weiteres Äquivalent des Alanpräkursors stabilisiert werden. Die Verbindungen sind imstande, Kohlenstoffdioxid zu aktivieren, wobei die CO2-Addukte der verschiedenen Derivate mit zunehmender Anzahl elektronegativer Substituenten an den Aluminiumzentren eine zunehmende thermodynamische Stabilisierung erfahren. Die neuartige Syntheseroute konnte auch zur Darstellung eines biphenylengebundenen P/Al-FLPs genutzt werden. In diesem Fall ist das Aluminiumzentrum durch die Wechselwirkung mit dem Phosphandonor ausreichend gesättigt, um die Isolierung der gespannten Verbindungen in monomerer Form zu ermöglichen. Dennoch weist das Alan eine hohe Lewis-Acidität auf und der FLP reagiert mit CO2 und Propadien. / Frustrated Lewis pairs (FLPs) consist of a Lewis acid and base, which are prevented from neutralising each other and in turn could be successfully used to activate small molecules. Boranes have been predominantly explored as electron pair acceptors. In contrast, aluminium-based systems, in particular intramolecular ones, are underrepresented despite their pronounced Lewis acidity. The aim of the present dissertation was to fathom which synthetic route is suitable for the preparation of intramolecular phosphorus/aluminium FLPs with large spatial separation of the Lewis functions and to investigate their reactivity. On a xanthene backbone bearing a diphenylphosphine moiety, dimesityl and bis(pentafluorophenyl)alane units could be introduced by lithiation and metathesis, and the resulting P/Al-FLPs are able to open tetrahydrofuran. The perfluorinated derivative exhibited a tenfold higher rate constant of the ring opening reaction. Using quantum chemical calculations, this could be attributed to the increased Lewis acidity of the aluminium centre. Using a tin-aluminum exchange on a trimethylstannylated xanthene precursor with methylaluminium compounds, P/Al-FLPs could be constructed, which are stabilised by another equivalent of the aluminium precursor. The compounds are capable of activating carbon dioxide, and the CO2 adducts of the various derivatives become increasingly stabilised as the number of electronegative substituents at the aluminium centres increases. The novel synthetic route could also be applied for the synthesis of a P/Al-FLP on the biphenylene linker. In this case, the aluminium centre is sufficiently saturated by an interaction with the phosphane donor to permit the isolation of the strained compounds in monomeric form. Nevertheless, the alane exhibits high Lewis acidity and the FLP reacts with CO2 and propadiene.
|
Page generated in 0.0673 seconds