• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 110
  • 21
  • 16
  • 10
  • 7
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 400
  • 192
  • 80
  • 72
  • 70
  • 56
  • 37
  • 28
  • 28
  • 27
  • 22
  • 21
  • 21
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Engineering of staphylococcal surfaces for biotechnological applications

Wernérus, Henrik January 2002 (has links)
The engineering of bacterial surfaces has in recent yearsattracted a lot of attention with applications in manydifferent areas of bioscience. Here we describe the use of twodifferent surface display systems for the gram-positivebacteria Staphylococcus carnosus and Staphylococcus xylosus invarious biotechnological applications. Environmental microbiology currently attracts a lot ofattention since genetically engineered plants and bacteriamight be used as bioadsorbents for sequestration of toxicmetals. Bacterial surface display of metal-binding peptidesmight enable recycling of the biomass by desorption ofaccumulated heavymetals. In an attempt to recruitstaphylococcal display systems for bioremediation purposes,polyhistidyl peptides were successfullly displayed on thesurface of recombinant S. carnosus and S. xylosus cells.Whole-cell Ni2+-binding assays demonstrated that therecombinant cells had gained metal-binding capacity compared towild-type cells. Tailor-made, metal-binding staphylococci was created using apreviously constructed phage-display combinatorial proteinlibrary based on a fungal cellulose-binding domain (CBD)derived from the cellobiohydrolase Cel7A of Trichoderma reseii.Novel metal-binding CBDs were generated through a phagemediated selection procedure. Selected CBD variants, now devoidof cellulose binding, were randomly selected and sequenceanalysis of selected variants revealed a marked preference forhistidine residues at the randomized positions. Surface displayof these novel CBD variants resulted in recombinantstaphylococci with increased metal-binding capacity compared tocontrol strains, indicating that this could become a generalstrategy to engineer bacteria for improved binding to specificmetal ions. Directed immobilization of cells with surface displayedheterologous proteins have widespread use in modernbiotechnology. Among other things they could provide aconvenient way of generating biofilters, biocatalysts orwhole-cell diagnostic devices. It was therefore investigatedwhether directed immobilization of recombinant staphylococci oncotton fibers could be achieved by functional display of afungal cellulose-binding domain (CBD). Recombinant S. carnosuscells with surface anchored CBDs from Trichoderma reseii Cel6Awere found to efficiently bind to cotton fibers creating almosta monolayer on the fibrous support. The co-expression of thisCBD together with previously described metal-binding proteinson the surface of our staphylococci would create means fordeveloping effective bioadsorbents for remediationpurposes. The original plasmid vector, designed for heterologoussurface display on recombinant S. carnosus cells has exhibitedproblems related to structural instability, possibly due to thepresence of a phage f1 origin of replication in the vectorsequence. This would be a problem if using the vector systemfor library display applications. Therefore, novel surfacedisplay vectors, lacking the phage ori were constructed andevaluated by enzymatic and flow cytometric whole-cell assays.One such novel vector, pSCXm, exhibited dramatically increasedplasmid stability with the retained high surface density ofexpressed heterologous proteins characteristic for the originalS. carnosus display vector, thus making it potentially moresuitable for library display applications. The successful engineering of our staphylococcal displaysystem encouraged us to further evaluate the potential to usethe staphylococcal system for display of combinatorial proteinlibraries and subsequent affinity based selections using flowcytometric cell sorting. A model system of recombinant S.carnosus cells with surface displayed engineered protein Adomains was constructed. It was demonstrated that target cellscould be sorted essentially quantitatively from a moderateexcess of background cells in a single sorting-step.Furthermore, the possibility of using staphylococcal surfacedisplay and flow cytometric cell sorting also for specificenrichment of very rare target cells by multiple rounds ofcell-sorting and in between amplification was demonstrated. <b>Key words:</b>affibody, albumin binding protein, bacterialsurface display, cell immobilization, bioremediation,combinatorial protein engineering, flow cytometry,Gram-positive, metal binding, staphylococcal protein A,Staphylococcus carnosus, Staphylococcus xylosus, whole-celldevices
302

Macromolecules at Interfaces / Makromolekyler på ytor

Larsericsdotter, Helén January 2004 (has links)
In this thesis, the structure and stability of globular proteins adsorbed onto nanometer-sized hydrophilic silica particles were investigated using differential scanning calorimetry (DSC), hydrogen/deuterium exchange (HDX), and mass spectrometry (MS). The adsorption process itself was characterized with fluorescence and absorption spectroscopy and surface plasmon resonance (SPR). The combination of these methods offered a unique insight into adsorption-induced changes within proteins related to their adsorption characteristics. DSC contributed with thermodynamic information on the overall structural stability within the protein population. HDX in combination with MS contributed information on the structure and stability of adsorbed proteins with focus on changes within the secondary structure elements. In order to increase the structural resolution in this part of the investigation, proteolysis was performed prior to the MS analyzing step. Knowledge on the protein adsorption process was utilized in a practical approach called ligand fishing. In this approach, SPR was used to monitor the chip-based affinity purification of a protein with MS used for protein identification. Adsorption isotherms revealed that electrostatic interactions play an important role in the adsorption of proteins to hydrophilic surfaces. DSC investigation revealed that the thermal stability of proteins reduces with increasing electrostatic attraction between the protein and the surface and that this effect diminishes at higher surface coverage. The mass-increase due to exchange between protein hydrogen atoms and deuterium atoms in solution was investigated as a function of time. This gave insight into adsorption-induced changes in the structural stability of proteins. By combining DSC and HDX-MS, it was possible to differentiate between adsorption-induced changes in the secondary and tertiary structure. Additionally, if limited proteolysis was performed, the investigations gave insight into the orientation and protein segment specific changes in the stability of proteins adsorbed to silica surfaces. The adsorption of proteins to silica particles also provided the basis for a new experimental design that allows handling of minute amounts of proteins in a ligand fishing application, as used in the field of functional proteomics.
303

Collagenous Colitis : A Study of Inflammatory Mediators and Growth Factors Based on Segmental Colorectal Perfusion and Immunohistochemistry

Taha, Yesuf Ahmed January 2006 (has links)
Collagenous colitis (CC) is an inflammatory bowel disease of unknown etiology. It is characterized by watery diarrhoea without blood, normal endoscopic findings but microscopically colonic mucosal inflammation and increased thickness of the subepithelial collagen band, the latter being a pathognomonic sign. The inflammatory infiltrate in the mucosa of CC contains lymphocytes, plasma cells, eosinophils, mast cells but few neutrophils. The pathophysiological roles of the thickened collagen band and the inflammatory infiltrate in CC are not fully understood. The aims of the present study were to develop a colonoscope based segmental perfusions technique and to analyze local intestinal secretion of inflammatory mediators: Eosinophilic Cationic Protein (ECP), Myeloperoxidase (MPO), Basic Fibroblast Growth Factor (bFGF), Vascular Endothelial Growth Factor (VEGF) and permeability marker albumin in CC patients without medication and also during steroid treatment. Furthermore, the colonic mucosal distribution of bFGF and VEGF were studied by immunohistochemical methods. Colonoscope-based segmental perfusions were performed in totally 22 patients and the success rate was 76% in both rectal and descending colon segments. The analysis showed high intraluminal concentrations of ECP, bFGF, VEGF and albumin in ten CC patients compared to 10 control patients. Further, albumin had correlations with ECP and VEGF. However, elevated concentrations of MPO, an important feature of ulcerative colitis, were only observed in a few CC patients. Immunohistochemistry visualized bFGF and VEGF in the colonic epithelium but also deeper in the lamina propria. The steroid treatment study (including 12 patients) showed that the perfusate concentrations of ECP, bFGF and VEGF declined significantly in parallel with decreased frequency of diarrhoea. In conclusion, a safe colonoscope-based, segmental perfusion technique was developed and perfusions of the rectum and descending colon were performed. CC patients had elevated perfusate concentrations of ECP, VEGF and bFGF. There was a marked reduction of these mediators during steroid treatment supporting the hypothesis that these inflammatory mediators separately or synergistically participate in the inflammatory reaction and tissue remodelling in CC patients. The finding of correlations between albumin and ECP or VEGF implies that permeability is increased in CC and may be triggered by ECP and VEGF.
304

Nutrition in Elderly Patients Undergoing Cardiac Surgery

Rapp-Kesek, Doris January 2007 (has links)
Many elderly undergo cardiac surgery. The prevalence of malnutrition in elderly is high and increases with comorbidity. This thesis aims to clarify some aspects on performing surgery in elderly concerning nutritional status, nutritional treatment and age-related physiology. Study I: 886 patients were assessed preoperatively by body mass index (BMI) and S-albumin and postoperatively for mortality and morbidity.. Low BMI increased the relative hazard for death and low S-albumin increased the risk for infection. BMI and S-albumin are useful in preoperative evaluations Study II: we followed energy intake in 31 patients for five postoperative days. Scheduled and unscheduled surgery did not differ in preoperative resting energy expenditure (REE). REE increased by 10-12% postoperatively, more in unscheduled CABG. Nutritional supplementation increased total energy intake. All patients exhibited postoperative energy deficits, less prominent in the supplemented group. There were no differences in protein synthesis or muscle degradation. Study III: in 16 patients, .we measured stress hormones and insulin resistance before surgery and for five postoperative days Patients were insulin resistant on the first two days. We saw no clearly adverse or beneficial effects of oral carbohydrate on insulin resistance or stress hormone response. Study IV: 73 patients, with early enteral nutrition (EN), were observed until discharge or resumed oral nutrition. EN started within three days in most patients. In a minority, problems occurred (gastric residual volumes, tube dislocation, vomiting, diarrhoea, aspiration pneumonia). In the cardiothoracic ICU individually adjusted early EN is feasible. Study V: in 16 patients, splanchnic blood flow (SBF) enhancing treatments (dopexamine (Dpx) or EN) were compared. Dpx increased systemic blood flow, but had only a transient effect on SBF. EN had no effect on systemic blood flow or SBF. Neither Dpx, EN or the combined treatment, exhibited any difference between groups on systemic or splanchnic VO2 or oxygen extraction ratio.
305

Biochemical and Epidemiological Studies of Early-Onset and Late-Onset Pre-Eclampsia

Wikström, Anna-Karin January 2007 (has links)
Biochemical and epidemiological aspects of pre-eclampsia were investigated, with the main focus on possible pathophysiological differences between early-onset and late-onset disease. In pre-eclamptic women poor correlation was found between albumin-creatinine ratio (ACR) in a random urine sample and total amount of albumin in a 24-hour urine collection. (Paper I)<b> </b> In a cohort of women giving birth in Sweden in 1973-82 we estimated the adjusted incidence rate ratio (IRR) for ischaemic heart disease (IHD) during the years 1987–2001. The adjusted IRR for development of IHD was 1.6-2.8 in woman exposed to gestational hypertensive disease during her pregnancy compared with unexposed women. The higher risk represents more severe or recurrent hypertensive disease. (Paper II) Before delivery, in early-onset pre-eclampsia (24-32 weeks) there were pronounced alterations in plasma concentrations of soluble fms-like tyrosine kinase 1 (sFlt1) and placental growth factor (PlGF), and also a higher placental 8-iso-PGF2α concentration and an elevated serum ratio of plasminogen-activator inhibitor (PAI)-1 to PAI-2 compared with early controls. In late-onset pre-eclampsia (35-42 weeks) there were only moderate alterations in sFlt1 and PlGF concentrations, and the placental 8-iso-PGF2α concentration and PAI-1/ PAI-2 ratio were similar to those in late controls. (Papers III, V) There was a rapid postpartum decrease in sFlt1 concentration in all groups. One week postpartum the sFlt1 concentration was persistently higher, however, in women with early-onset pre-eclampsia compared with early controls. (Paper IV) In conclusion: random ACR cannot replace 24-hour urine collections for quantification of albuminuria in pre-eclamptic women; gestational hypertensive disease, especially severe or recurrent, increases the risk for later IHD; early-onset, but not late-onset pre-eclampsia is associated with pronounced alterations of angiogenesis-related markers and only early-onset pre-eclampsia is associated with placental oxidative stress and an increased PAI-1/ PAI-2 ratio, all suggesting a stronger link between early-onset than late-onset pre-eclampsia and a dysfunctional placenta.
306

Studies of protein structure, dynamics and protein-ligand interactions using NMR spectroscopy

Tengel, Tobias January 2007 (has links)
In the first part of the thesis, protein-ligand interactions were investigated using the chaperone LcrH, from Yersinia as target protein. The structure of a peptide encompassing the amphipathic domain (residue 278-300) of the protein YopD from Yersinia was determined by NMR in 40% TFE. The structure of YopD278-300 is a well defined α-helix with a β-turn at the C-terminus of the helix capping the structure. This turn is crucial for the structure as peptides lacking the residues involved in the turn are unstructured. NMR relaxation indicates that the peptide is not monomeric. This is supported by intermolecular NOEs found from residue Phe280 to Ile288 and Val292 indicative of a multimeric structure with the helical structures oriented in an antiparallel manner with hydrophobic residues forming the oligomer. The interaction with the chaperone LcrH was confirmed by 1H relaxation experiments and induced chemical shift changes in the peptide Protein-ligand interactions were investigated further in the second paper using a different approach. A wide range of substances were used in screening for affinity against the chaperones PapD and FimC from uropathogenic Escherichia coli using 1H relaxation NMR experiments, surface plasmon resonance and 19F NMR. Fluorine NMR proved to be advantageous as compared to proton NMR as it is straight forward to identify binding ligands due to the well resolved 19F NMR spectra. Several compounds were found to interact with PapD and FimC through induced line-broadening and chemical shift changes for the ligands. Data corroborate well with surface plasmon resonance and proton NMR experiments. However, our results indicate the substances used in this study to have poor specificity for PapD and FimC as the induced chemical shift is minor and hardly no competitive binding is observed. Paper III and IV is an investigation of the structural features of the allergenic 2S albumin Ber e 1 from Brazil nut. Ber e 1 is a 2S albumin previously identified as the major allergen of Brazil nut. Recent studies have demonstrated that endogenous Brazil nut lipids are required for an immune response to occur in vivo. The structure was obtained from 3D heteronuclear NMR experiments followed by simulated annealing using the software ARIA. Interestingly, the common fold of the 2S albumin family, described as a right-handed super helix with the core composed of a helix bundle, is not found in Ber e 1. Instead the C-terminal region is participating in the formation of the core between helix 3, 4 and 5. The dynamic properties of Ber e 1 were investigated using 15N relaxation experiments and data was analyzed using the model-free approach. The analysis showed that a few residues in the loop between helix 2 and 3 experience decreased mobility, compared to the rest of the loop. This is consistent with NOE data as long range NOEs were found from the loop to the core region of the protein. The anchoring of this loop is a unique feature of Ber e 1, as it is not found in any other structures of 2S albumins. Chemical shift mapping of Ber e 1 upon the addition of lipid extract from Brazil nut identified 4 regions in the protein where chemical shift perturbations were detected. Interestingly, all four structural clusters align along a cleft in the structure formed by helix 1-3 on one side and helix 4-5 on the other. This cleft is big enough to encompass a lipid molecule. It is therefore tempting to speculate whether this cleft is the lipid binding epitope in Ber e 1.
307

Severe cerebral emergency : aspects of treatment and outcome in the intensive care patient

Rodling Wahlström, Marie January 2009 (has links)
Severe Traumatic Brain Injury (TBI) and aneurysmal Subarachnoid Hemorrhage (SAH) are severe cerebral emergencies. They are common reasons for extensive morbidity and mortality in young people and adults in the western world. This thesis, based on five clinical studies in patients with severe TBI (I-IV) and SAH (V), is concentrated on examination of pathophysiological developments and of evaluation of therapeutic approaches in order to improve outcome after cerebral emergency. The treatment for severe TBI patients at Umeå University Hospital, Sweden is an intracranial pressure (ICP)-targeted therapy according to “the Lund-concept”. This therapy is based on physiological principles for cerebral volume regulation, in order to preserve a normal cerebral microcirculation and a normal ICP. The main goal is to avoid development of secondary brain injuries, thus avoiding brain oedema and worsened microcirculation. Study I is evaluating retrospectively 41 children with severe TBI, from 1993 to 2002. The boundaries of the ICP-targeted protocol were obtained in 90%. Survival rate was 93%, and favourable outcome (Glasgow Outcome Scale, score 4+5) was 80%. Study II is retrospectively analysing fluid administration and fluid balance in 93 adult patients with severe TBI, from 1998 to 2001.The ICP-targeted therapy used, have defined fluid strategies. The total fluid balance was positive day one to three, and negative day four to ten. Colloids constituted 40-60% of total fluids given/day. Severe organ failure was evident for respiratory insufficiency and observed in 29%. Mortality within 28 days was 11%. Study III is a prospective, randomised, double-blind, placebo-controlled clinical trial in 48 patients with severe TBI. In order to improve microcirculation and prevent oedema formation, prostacyclin treatment was added to the ICP-targeted therapy. Prostacyclin is endogenously produced, by the vascular endothelium, and has the ability to decrease capillary permeability and vasodilate cerebral capillaries. Prostacyclin is an inhibitor of leukocyte adhesion and platelet aggregation. There was no significant difference between prostacyclin or placebo groups in clinical outcome or in cerebral microdialysis markers such as lactatepyruvate ratio and brain glucose levels. Study IV is part of the third trial and focus on the systemic release of pro-inflammatory mediators that are rapidly activated by trauma. The systemically released pro-inflammatory mediators, interleukin-6 and CRP were significantly decreased in the prostacyclin group versus the placebo group. Study V is a prospective pilot study which analyses asymmetric dimethylarginine (ADMA) concentrations in serum from SAH patients. Acute SAH patients have cerebral vascular, systemic circulatory and inflammatory complications. ADMA is a marker in vascular diseases which is correlated to endothelial dysfunction. ADMA concentrations in serum were significantly elevated seven days after the SAH compared to admission and were still elevated at the three months follow-up. Our results show overall low mortality and high favourable outcome compared to international reports on outcome in severe TBI patients. Prostacyclin administration does not improve cerebral metabolism or outcome but significantly decreases the levels of pro-inflammatory mediators. SAH seems to induce long-lasting elevations of ADMA in serum, which indicates persistent endothelial dysfunction. Endothelial dysfunction may influence outcome after severe cerebral emergencies.
308

Electrospray Ionization Mass Spectrometry for Determination of Noncovalent Interactions in Drug Discovery

Benkestock, Kurt January 2008 (has links)
Noncovalent interactions are involved in many biological processes in which biomolecules bind specifically and reversibly to a partner. Often, proteins do not have a biological activity without the presence of a partner, a ligand. Biological signals are produced when proteins interact with other proteins, peptides, oligonucleotides, nucleic acids, lipids, metal ions, polysaccharides or small organic molecules. Some key steps in the drug discovery process are based on noncovalent interactions. We have focused our research on the steps involving ligand screening, competitive binding and ‘off-target’ binding. The first paper in this thesis investigated the complicated electrospray ionization process with regards to noncovalent complexes. We have proposed a model that may explain how the equilibrium between a protein and ligand changes during the droplet evaporation/ionization process. The second paper describes an evaluation of an automated chip-based nano-ESI platform for ligand screening. The technique was compared with a previously reported method based on nuclear magnetic resonance (NMR), and excellent correlation was obtained between the results obtained with the two methods. As a general conclusion we believe that the automated nano-ESI/MS should have a great potential to serve as a complementary screening method to conventional HTS. Alternatively, it could be used as a first screening method in an early phase of drug development programs when only small amounts of purified targets are available. In the third article, the advantage of using on-line microdialysis as a tool for enhanced resolution and sensitivity during detection of noncovalent interactions and competitive binding studies by ESI-MS was demonstrated. The microdialysis device was improved and a new approach for competitive binding studies was developed. The last article in the thesis reports studies of noncovalent interactions by means of nanoelectrospray ionization mass spectrometry (nanoESI-MS) for determination of the specific binding of selected drug candidates to HSA. Two drug candidates and two known binders to HSA were analyzed using a competitive approach. The drugs were incubated with the target protein followed by addition of site-specific probes, one at a time. The drug candidates showed predominant affinity to site I (warfarin site). Naproxen and glyburide showed affinity to both sites I and II. / QC 20100705
309

Sustainable Reaction and Separation Systems

Newton, Elizabeth Lynn 17 August 2005 (has links)
With increasing environmental awareness and natural resource limitations, researchers must begin to incorporate sustainability into their process and product designs. One target for green engineering is in reaction and separation design. This is typically done in a wasteful and often toxic manner with organic solvents and lack of recycle. The following thesis discusses alternatives to these costly separations by means of ionic liquids, benign extraction, separation with carbon dioxide, and near critical water. Ionic liquids are combined with carbon dioxide to induce melting point depressions of up to 124 degrees Celsius. Using this system as a reaction medium will offer control over the reaction phases while utilizing green solvents. Benign extractions are performed on both ferulic acid and on proteins from biomass by replacing alkaline solvents and costly protein separation techniques with simple liquid-liquid extraction. This means simpler systems and less waste than from previous methods. This thesis also discusses an opportunity for more efficient separation and recycle of a pharmaceutical catalyst, Mn-Salen. Using carbon dioxide with the organic aqueous tunable solvent system, the reaction can be run homogeneously and the product and catalyst separated heterogeneously, thus creating an extremely efficient process. Lastly, near critical water is used as an extraction and reaction medium by extracting ferulic acid from Brewers Spent Grain and then catalyzing its transformation to 4-vinylguaiacol. In this manner a simple, benign process is used to turn waste into valuable chemicals. Although somewhat different, each of the studied processes strives to eliminate waste and toxicity of many commonly used reaction and separation techniques, thus creating safe and sustainable processes.
310

Engineering of staphylococcal surfaces for biotechnological applications

Wernérus, Henrik January 2002 (has links)
<p>The engineering of bacterial surfaces has in recent yearsattracted a lot of attention with applications in manydifferent areas of bioscience. Here we describe the use of twodifferent surface display systems for the gram-positivebacteria Staphylococcus carnosus and Staphylococcus xylosus invarious biotechnological applications.</p><p>Environmental microbiology currently attracts a lot ofattention since genetically engineered plants and bacteriamight be used as bioadsorbents for sequestration of toxicmetals. Bacterial surface display of metal-binding peptidesmight enable recycling of the biomass by desorption ofaccumulated heavymetals. In an attempt to recruitstaphylococcal display systems for bioremediation purposes,polyhistidyl peptides were successfullly displayed on thesurface of recombinant S. carnosus and S. xylosus cells.Whole-cell Ni2+-binding assays demonstrated that therecombinant cells had gained metal-binding capacity compared towild-type cells.</p><p>Tailor-made, metal-binding staphylococci was created using apreviously constructed phage-display combinatorial proteinlibrary based on a fungal cellulose-binding domain (CBD)derived from the cellobiohydrolase Cel7A of Trichoderma reseii.Novel metal-binding CBDs were generated through a phagemediated selection procedure. Selected CBD variants, now devoidof cellulose binding, were randomly selected and sequenceanalysis of selected variants revealed a marked preference forhistidine residues at the randomized positions. Surface displayof these novel CBD variants resulted in recombinantstaphylococci with increased metal-binding capacity compared tocontrol strains, indicating that this could become a generalstrategy to engineer bacteria for improved binding to specificmetal ions.</p><p>Directed immobilization of cells with surface displayedheterologous proteins have widespread use in modernbiotechnology. Among other things they could provide aconvenient way of generating biofilters, biocatalysts orwhole-cell diagnostic devices. It was therefore investigatedwhether directed immobilization of recombinant staphylococci oncotton fibers could be achieved by functional display of afungal cellulose-binding domain (CBD). Recombinant S. carnosuscells with surface anchored CBDs from Trichoderma reseii Cel6Awere found to efficiently bind to cotton fibers creating almosta monolayer on the fibrous support. The co-expression of thisCBD together with previously described metal-binding proteinson the surface of our staphylococci would create means fordeveloping effective bioadsorbents for remediationpurposes.</p><p>The original plasmid vector, designed for heterologoussurface display on recombinant S. carnosus cells has exhibitedproblems related to structural instability, possibly due to thepresence of a phage f1 origin of replication in the vectorsequence. This would be a problem if using the vector systemfor library display applications. Therefore, novel surfacedisplay vectors, lacking the phage ori were constructed andevaluated by enzymatic and flow cytometric whole-cell assays.One such novel vector, pSCXm, exhibited dramatically increasedplasmid stability with the retained high surface density ofexpressed heterologous proteins characteristic for the originalS. carnosus display vector, thus making it potentially moresuitable for library display applications.</p><p>The successful engineering of our staphylococcal displaysystem encouraged us to further evaluate the potential to usethe staphylococcal system for display of combinatorial proteinlibraries and subsequent affinity based selections using flowcytometric cell sorting. A model system of recombinant S.carnosus cells with surface displayed engineered protein Adomains was constructed. It was demonstrated that target cellscould be sorted essentially quantitatively from a moderateexcess of background cells in a single sorting-step.Furthermore, the possibility of using staphylococcal surfacedisplay and flow cytometric cell sorting also for specificenrichment of very rare target cells by multiple rounds ofcell-sorting and in between amplification was demonstrated.</p><p><b>Key words:</b>affibody, albumin binding protein, bacterialsurface display, cell immobilization, bioremediation,combinatorial protein engineering, flow cytometry,Gram-positive, metal binding, staphylococcal protein A,Staphylococcus carnosus, Staphylococcus xylosus, whole-celldevices</p>

Page generated in 0.072 seconds