Spelling suggestions: "subject:"amphiphilic helix"" "subject:"amphiphile helix""
1 |
MEGs de S. mansoni contendo hélices anfipáticas: caracterização da interação com bicamadas lipídicas / MEGs from S. mansoni containing amphipathic helices: characterization of the interaction with lipid bilayersFelizatti, Ana Paula 11 July 2017 (has links)
A classe de proteínas das MEGs (codificadas por genes de micro-éxon) presente em Schistosoma mansoni, ganhou evidência após a publicação do genoma deste parasita, principalmente por ser majoritariamente secretada, estando em contato direito com moléculas do hospedeiro, e possuir alta taxa de variação, o que poderia ter relação com um possível um mecanismo de evasão do sistema imune. Assim, foram escolhidas proteínas da classe das MEGs, todas com predição de hélice anfipática em sua estrutura, para investigação neste trabalho. Hélices anfipáticas são amplamente descritas na literatura como tendo alta propensão à interação com membranas celulares e interessantes funções fisiológicas. O objetivo deste projeto foi estudar a dinâmica de interação com membranas e estabelecer possíveis indícios de função biológica das proteínas MEG-24 e MEG-27 a partir de técnicas biofísicas. Optou-se por trabalhar com essas proteínas produzidas a partir da síntese química. Utilizando as técnicas de CD, Fluorescência e DLS, observou-se que a presença de miméticos de membrana induzem o enovelamento e o aumento da estabilidade térmica de MEG-27, e interferem no seu estado oligomérico. Para MEG-24, também foi observado aumento da estabilidade térmica e influência no estado oligomérico na presença de sistemas miméticos de membrana. Utilizando OCD, inferiu-se que MEG-27 possivelmente interage com a superfície da membrana, a passo que MEG-24 se insere na bicamada. Adicionalmente, ambas foram capazes de interferir na dinâmica de vesículas, conforme observado pelo ensaio de vazamento de calceína e DSC. Utilizando células de eritrócito e um modelo de membrana a partir dessas células (ghosts) foram realizados ensaios biológicos, DSC e EPR. A capacidade de MEG-24 e MEG-27 realizarem hemólise e hemoaglutinação, respectivamente, reitera o potencial de interação destas proteínas com membranas biológicas. Os resultados de DSC apontaram que ambas interferem nas transições das proteínas de membrana embebidas na bicamada de ghosts de eritrócitos. Por EPR, notou-se que MEG-27 tem maior efeito na dinâmica de lipídios em detrimento a MEG-24, possivelmente devido a um mecanismo de acomodação envolvendo domínios raft e a diferença de orientação de interação entre ambas as proteínas. A expressão de MEG-27 exclusivamente na região da glândula do esôfago em vermes adultos verificada por WISH, sugere que a mesma deva entrar em contato com células recém ingeridas pelo parasita. Não foi observada atividade antimicrobiana para ambas e não foram encontrados parceiros de interação proteínas pela técnica de Duplo-híbrido para MEG-27. Concluiu-se que os peptídeos estudados interagem com membranas biológicas, podendo ter papéis importantes na interface de interação parasito-hospedeiro. / The class of MEGs proteins (coded by micro-exon genes) present in Schistosoma mansoni, drawn attention after the parasite genome publication. This proteins are mostly secreted, being in direct contact with host molecules and with a high rate of variation, which could be a mechanism of Imune system evasion. Thus, proteins of the MEGs class, all with amphipathic prediction in their structure, were chosen for investigation in this work. Amphipathic helices are widely described in the literature with high propensity to interact with membranes and, consequently, probability of related biological function. The objective of this project was to study the interaction dynamics with membranes and to establish possible indications of biological function of MEG-24 and MEG-27 proteins from biophysical techniques. We chose to work with these proteins produced by chemical synthesis. Using CD, Fluorescence and DLS techniques, it was observed that the presence of membrane mimetics induced the folding and increased thermal stability of MEG-27, and interfered with its oligomeric state. For MEG-24, an increase in thermal stability and influence on the oligomeric state was also observed when in the presence of membrane mimetic systems. The results of OCD suggest that MEG-27 possibly interacts with the membrane surface, whereas MEG-24 is inserted into the bilayer. Both were able to interfere with vesicle dynamics, as observed by the Leakage and DSC tests. Using a more realistic membrane model from erythrocyte cells, biological assays, DSC and EPR were performed. The ability of MEG-24 and MEG-27 to perform hemolysis and hemagglutination, respectively, provides evidence of the potential for interaction of these proteins with biological membranes. The DSC results indicated that both interfere with the transitions of the membrane proteins embedded in the bilayer of erythrocyte ghosts. By EPR, it was noted that MEG-27 has a greater effect on lipid dynamics than MEG-24, possibly due to an accommodation mechanism involving raft domains and the difference in orientation of interaction between both proteins. The expression of MEG-27 exclusively in the region of the esophagus gland in adult worms verified by WISH suggests that it should come into contact with cells just ingested by the parasite. No antimicrobial activity was observed for both and no protein interaction partners were found by the MEG-27 double-hybrid technique. It was concluded that the studied peptides interact with biological membranes and may have important roles in the parasite-host interaction interface.
|
2 |
Etude in silico des gouttelettes lipidiques et de leur interaction avec des protéines périphériques via des hélices amphipathiques / In silico study of lipid droplet and their interaction with peripheral proteins through anphipathic helicesBacle, Amélie 29 November 2016 (has links)
Les gouttelettes lipidiques (GL) sont des organites intracellulaire qui jouent un rôle central dans le métabolisme des lipides. Elles sont également impliquées dans des maladies telles que l'obésité ou le diabète. Les GL ont une structure unique : une monocouche de phospholipides (PL) qui entoure un cœur de lipide neutre composé de triglycérides (TAG) et d'esters de cholestérol (CE). Certaines protéines sont recrutées sur les GL mais également à la surface d'autres organites, alors que d'autres protéines ciblent spécifiquement la surface des GL. Il a été montré que quelques une de ces protéines seraient sensibles à une haute tension de surface, soit une augmentation de l'aire par lipide, dans des GL reconstituées. Comment les propriétés de surface d'une GL diffèrent d'une membrane ? Comment la surface d'une GL répond à l'augmentation de la tension de surface ?Comment les protéines interagissent avec la surface des GL ? Nous avons réalisé des simulations de dynamique moléculaire atome-unifié de système tricouche qui mime la surface d'une GL afin de caractériser les propriétés de surface de cet organite. Plusieurs simulations ont été effectuées à différentes tension de surface en augmentant l'aire par lipide. Les propriétés de surface ont été caractérisées en terme de défauts de \textit{packing} (i.e. vides interfaciaux à l'interface membrane/eau). Aucune différence n'a été observé avec une bicouche à l'équilibre. Cependant, la tension de surface promeut l'insertion de lipides neutres dans la monocouche et augmente significativement les défauts de \textit{packing}. Des simulations préliminaires sur l'interaction d'une protéine modèle, la périlipine 4, qui se lie aux GLs \textit{in vivo} via une longue hélice amphipathique 11/3 ont été faites. Les premiers résultats montrent que la protéine adopte une structure plus flexible dans une interface huile/eau que dans une interface membrane/eau. Des essais de dimérisation montrent que la répartition des résidus chargés serait importante pour le processus d'oligomérisation. Pris globalement, ces résultats apportent une compréhension moléculaire quantitative sur l'effet de la tension de surface sur la monocouche de GL et des résultats préliminaires sur l'interaction protéine/GL. Notre travail constitue une première étape vers la description du comportement et de la structure des propriétés de surface des GL et peut être utile à la compréhension du ciblage protéique vers la surface de GL. / Lipid droplets (LD) are intracellular organelles that have a central role in lipid metabolism andimplication in diseases such as obesity and diabetes. LDs have a unique architecture: aphospholipid (PL) monolayer that surrounds a neutral lipid core composed of triacylglycerols (TAG)and cholesteryl esters (CE). Some proteins are recruited both to LDs and to other cellularorganelles, whereas others are targeted specifically to the surface of LDs. It has been shown thatsome of these proteins could be sensitive to a high surface tension (ST), increase in the area perlipid, in reconstituted LD. How do surface properties differ between a membrane and an LD? Howdoes the LD surface respond to an increase in ST? How do proteins interact with LDs? Weperformed united-atom molecular dynamics simulations on trilayer systems that mimic the LDsurface to investigate the surface properties of this organelle. Several simulations were performedat different ST by increasing the area per lipid. Surface properties were characterized in terms ofpacking defects (i.e interfacial voids at the membrane-water interface). No difference was observedwith a bilayer at equilibrium. However, high ST promoted the insertion of neutral lipids into themonolayer and a significant increase of packing defects. Preliminary simulations has been done oninteraction of a model protein called perilipin 4, which binds to LDs \textit{in vivo} using a long 11/3amphipathic helix. The first results show that the protein adopts a more flexible conformation on oilwaterinterface than in bilayer-water interface. Attempts of dimerisation show that the localization ofthe charged residues may be involved in the oligomerisation process. Taken together, our resultsprovide a quantitative molecular understanding of how ST affects the LD surface and preliminaryresults on protein-LD interaction. Our work constitutes a first step towards characterizing thebehavior and structure of LD surface properties and will be useful for a better understanding onhow some specific proteins are targeted to LD.
|
3 |
MEGs de S. mansoni contendo hélices anfipáticas: caracterização da interação com bicamadas lipídicas / MEGs from S. mansoni containing amphipathic helices: characterization of the interaction with lipid bilayersAna Paula Felizatti 11 July 2017 (has links)
A classe de proteínas das MEGs (codificadas por genes de micro-éxon) presente em Schistosoma mansoni, ganhou evidência após a publicação do genoma deste parasita, principalmente por ser majoritariamente secretada, estando em contato direito com moléculas do hospedeiro, e possuir alta taxa de variação, o que poderia ter relação com um possível um mecanismo de evasão do sistema imune. Assim, foram escolhidas proteínas da classe das MEGs, todas com predição de hélice anfipática em sua estrutura, para investigação neste trabalho. Hélices anfipáticas são amplamente descritas na literatura como tendo alta propensão à interação com membranas celulares e interessantes funções fisiológicas. O objetivo deste projeto foi estudar a dinâmica de interação com membranas e estabelecer possíveis indícios de função biológica das proteínas MEG-24 e MEG-27 a partir de técnicas biofísicas. Optou-se por trabalhar com essas proteínas produzidas a partir da síntese química. Utilizando as técnicas de CD, Fluorescência e DLS, observou-se que a presença de miméticos de membrana induzem o enovelamento e o aumento da estabilidade térmica de MEG-27, e interferem no seu estado oligomérico. Para MEG-24, também foi observado aumento da estabilidade térmica e influência no estado oligomérico na presença de sistemas miméticos de membrana. Utilizando OCD, inferiu-se que MEG-27 possivelmente interage com a superfície da membrana, a passo que MEG-24 se insere na bicamada. Adicionalmente, ambas foram capazes de interferir na dinâmica de vesículas, conforme observado pelo ensaio de vazamento de calceína e DSC. Utilizando células de eritrócito e um modelo de membrana a partir dessas células (ghosts) foram realizados ensaios biológicos, DSC e EPR. A capacidade de MEG-24 e MEG-27 realizarem hemólise e hemoaglutinação, respectivamente, reitera o potencial de interação destas proteínas com membranas biológicas. Os resultados de DSC apontaram que ambas interferem nas transições das proteínas de membrana embebidas na bicamada de ghosts de eritrócitos. Por EPR, notou-se que MEG-27 tem maior efeito na dinâmica de lipídios em detrimento a MEG-24, possivelmente devido a um mecanismo de acomodação envolvendo domínios raft e a diferença de orientação de interação entre ambas as proteínas. A expressão de MEG-27 exclusivamente na região da glândula do esôfago em vermes adultos verificada por WISH, sugere que a mesma deva entrar em contato com células recém ingeridas pelo parasita. Não foi observada atividade antimicrobiana para ambas e não foram encontrados parceiros de interação proteínas pela técnica de Duplo-híbrido para MEG-27. Concluiu-se que os peptídeos estudados interagem com membranas biológicas, podendo ter papéis importantes na interface de interação parasito-hospedeiro. / The class of MEGs proteins (coded by micro-exon genes) present in Schistosoma mansoni, drawn attention after the parasite genome publication. This proteins are mostly secreted, being in direct contact with host molecules and with a high rate of variation, which could be a mechanism of Imune system evasion. Thus, proteins of the MEGs class, all with amphipathic prediction in their structure, were chosen for investigation in this work. Amphipathic helices are widely described in the literature with high propensity to interact with membranes and, consequently, probability of related biological function. The objective of this project was to study the interaction dynamics with membranes and to establish possible indications of biological function of MEG-24 and MEG-27 proteins from biophysical techniques. We chose to work with these proteins produced by chemical synthesis. Using CD, Fluorescence and DLS techniques, it was observed that the presence of membrane mimetics induced the folding and increased thermal stability of MEG-27, and interfered with its oligomeric state. For MEG-24, an increase in thermal stability and influence on the oligomeric state was also observed when in the presence of membrane mimetic systems. The results of OCD suggest that MEG-27 possibly interacts with the membrane surface, whereas MEG-24 is inserted into the bilayer. Both were able to interfere with vesicle dynamics, as observed by the Leakage and DSC tests. Using a more realistic membrane model from erythrocyte cells, biological assays, DSC and EPR were performed. The ability of MEG-24 and MEG-27 to perform hemolysis and hemagglutination, respectively, provides evidence of the potential for interaction of these proteins with biological membranes. The DSC results indicated that both interfere with the transitions of the membrane proteins embedded in the bilayer of erythrocyte ghosts. By EPR, it was noted that MEG-27 has a greater effect on lipid dynamics than MEG-24, possibly due to an accommodation mechanism involving raft domains and the difference in orientation of interaction between both proteins. The expression of MEG-27 exclusively in the region of the esophagus gland in adult worms verified by WISH suggests that it should come into contact with cells just ingested by the parasite. No antimicrobial activity was observed for both and no protein interaction partners were found by the MEG-27 double-hybrid technique. It was concluded that the studied peptides interact with biological membranes and may have important roles in the parasite-host interaction interface.
|
4 |
The molecular basis for ER tubule formationBrady, Jacob Peter January 2015 (has links)
Integral membrane proteins of the DP1 and reticulon families are responsible for maintaining the high membrane curvature required for both smooth ER tubules and the edges of ER sheets. Mutations in these proteins lead to motor neurone diseases such as hereditary spastic paraplegia. Reticulon/DP1 proteins contain Reticulon Homology Domains (RHD) that have unusually long (≈30 aa) hydrophobic segments and are proposed to adopt intramembrane helical hairpins that stabilise membrane curvature. I have uncovered the secondary structure and dynamics of the DP1 protein Yop1p and identified a C-terminal conserved amphipathic helix that on its own interacts strongly with negatively charged membranes and is necessary for membrane tubule formation. Analyses of DP1 and reticulon family members indicate that most, if not all, contain C-terminal sequences capable of forming amphipathic helices. Together, these results indicate that amphipathic helices play a previously unrecognised role in RHD membrane curvature stabilisation. This work paves the way towards full structure determination of Yop1p by solution state NMR and marks the first high structural resolution study on an RHD protein.
|
5 |
Specificity of membrane targeting by ALPS motifs and α-synuclein / La spécificité de reconnaissance membranaire par le motif ALPS et l’α-synucléinePranke, Iwona Maria 28 November 2011 (has links)
La communication entre les différentes organelles se fait par l’intermédiaire du trafic vésiculaire, un processus qui nécessite un remodelage continu des membranes. Les vésicules fortement courbées bourgeonnent d'un compartiment donneur et fusionnent avec un compartiment accepteur. Les protéines impliquées dans le bourgeonnement et fusion des vésicules ont été largement étudiées. Récemment, la découverte de détecteurs de courbure membranaire a révélé que le trafic membranaire pourrait être régulé à un niveau supplémentaire, par la détection de la forme de la membrane. Le premier détecteur de courbure membranaire identifié était le motif ALPS (Amphipathic Lipid Packing Sensor), qui a été trouvé dans un certain nombre de protéines de la voie sécrétoire précoce et l'enveloppe nucléaire. La protéine d’arrimage GMAP-210 localisé au niveau du cis-Golgi, est composée d’une longue superhélice (coiled-coil) et d’un motif ALPS à l'extrême N-terminale. Il a été démontré in vitro, que ce motif se replie et forme une hélice amphipathique capable de se fixer sur des petits liposomes. Toutefois, l'identité des vésicules, reconnues par ce détecteur de courbure dans la cellule, reste inconnue. α-Synucléine est une autre protéine qui se lie préférentiellement à des membranes très courbées. Cette protéine localisée sur les vésicules synaptiques, est impliquée dans la régulation du taux de vésicules au niveau des terminaisons nerveuses pré-synaptiques. Connue pour son rôle central dans le développement de la maladie de Parkinson, α-synucléine contient une région non structurée en solution, mais qui forme une hélice amphipathique au contact de petits liposomes in vitro. Les hélices amphipathiques formées par le motif ALPS et α-synucléine sont très différentes aussi bien sur le plan chimique que sur le plan conformationel. Le motif ALPS possède une face hydrophobe bien développée, mais un coté polair pauvre avec très peu de résidus chargés. α-Synucléine, en revanche, a un côté hydrophobe modéré, et une face polaire zwitterionique riche en résidus chargés. L'objectif principal du projet était de comparer les propriétés de liaison aux membranaires in vivo et in vitro de ces deux hélices amphipathiques de structure opposée. L’expression de ces deux sondes chez la levure, favorise l'accumulation de structures vésiculaires de propriétés différentes. L'extrémité N-terminale de la protéine GMAP-210 contenant son motif ALPS (GMAPN) co-localisé spécifiquement avec des marqueurs de la voie sécrétoire précoce, alors une sonde contenant une portion de l’hélice amphipathique d’α-synucléine co-localise avec des marqueurs endocytiques et post-Golgiens. La mutagenèse du motif ALPS et l'inversion de la séquence de ALPS dans GMAPN confirment que ce détecteur de courbure membranaire se fixe spécifiquement aux vésicules via des interactions directes protéines-lipides, plutôt que les interactions protéines-protéines. Notre analyse a montré que ces détecteurs de courbure mammifères, exprimés dans la levure préservent leur capacité à cibler des vésicules spécifiques, vésicules de la voie sécrétoire précoce pour les motifs ALPS, et vésicules d’endocytose/post-Golgi pour α-synucléine. La composition membranaire de ces vésicules correspond à la composition des liposomes fixés par le motif ALPS et α-synucléine in vitro. Les propriétés biochimiques opposées du motif ALPS et α-synucléine, sont parfaitement adaptés à chacun de ces deux environnements membranaires dans la cellule. Le programme HeliQuest est conçu pour identifier des hélices amphipathiques capables de se lier sur les membranes, y compris les motifs ALPS. Un nouveau module conçu pour identifier les hélices amphipathiques avec des propriétés similaires à α-synucléine a été récemment élaboré. Les recherches effectuées dans les bases de données de protéines de levure et humaines ont permis d’identifier des hélices amphipathiques candidats qui ont des propriétés similaires à α-synucléine, dans de nombreuses protéines. Nous avons préparé un ensemble de sondes, dans lequel ces hélices sont insérées à la fin de la superhélice de GMAPN. Une première étude de leur co-localisation dans les cellules de levure avec un ensemble de marqueurs démontre une localisation spécifique, ce qui suggère que ces hélices peuvent avoir la capacité de cibler des membranes de manière spécifique. D'autres travaux seraient nécessaires pour confirmer ou pas si ces hélices amphipathiques font partie d'une nouvelle classe de détecteurs de courbure ayant les mêmes propriétés que α-synucléine. / Communication between membrane-bound organelles is mediated by vesicular trafficking, a process which requires continual membrane remodeling. Highly curved vesicles bud from a donor compartment through functioning of different coat protein complexes, and fuse with an acceptor compartment thanks to proteins of the membrane fusion machinery. The proteins involved in vesicle budding and fusion have been extensively studied. Recently, the discovery of membrane curvature sensors revealed that membrane trafficking could be regulated at an additional level, through detection of the shape of a membrane. The first membrane curvature sensor identified was the ALPS (Amphipathic Lipid Packing Sensor) motif, which has been found in a number of proteins that function in the early secretory pathway and nuclear envelope. One example is GMAP-210, a long coiled-coil tether localizing to cis-Golgi membranes, which has an ALPS motif at its extreme N-terminus. This ALPS motif was found to fold into an amphipathic helix and bind to small liposomes in vitro. However, the identity of the vesicles that this curvature sensor binds to in cells is not known. Another protein - α-synuclein - has also been reported to bind preferentially to highly curved membranes. This neuronal protein localizes to synaptic vesicles and is involved in maintaining the reserve pool of vesicles in pre-synaptic nerve terminals. α-Synuclein, known for its central role in the development of Parkinson’s disease, contains a region that is unstructured in solution, but forms an amphipathic helix upon binding to small liposomes in vitro. The chemistry and geometry of the amphipathic helices formed by ALPS motifs and α-synuclein are very different. The ALPS motif has a well-developed hydrophobic face but a poor polar side with few charged residues. α-Synuclein, in contrast, has a restrained hydrophobic side, and a zwitterionic polar face rich in charged residues. The main goal of the project was to compare the in vivo and in vitro membrane binding properties of these two amphipathic helices of opposite structure. When expressed in yeast cells, these two curvature sensors promoted the accumulation of vesicular structures possessing different characteristics. The N-terminus of GMAP-210 containing its ALPS motif (GMAPN) co-localized specifically with early secretory pathway markers, whereas a probe containing a portion of the amphipathic membrane-binding helix of α-synuclein co-localized with endocytic and post-Golgi markers. Mutagenesis of the ALPS motif and the inversion of the ALPS sequence in GMAPN support the conclusion that this membrane curvature sensor is targeted to specific vesicles in cells through direct protein-lipid, rather than protein-protein interactions. Our analysis has shown, remarkably, that mammalian curvature sensors expressed in yeast cells preserve their capacity to target specific vesicles, those of the early secretory pathway for ALPS motifs, and endocytic/post-Golgi vesicles for α-synuclein. The membrane composition of these vesicles corresponds to the preferred in vitro liposome binding properties of these membrane curvature sensors. The contrasting chemistries of ALPS motifs and α-synuclein are well adapted to each of these two major membrane environments in the cell. The HeliQuest algorithm is designed to search databases for membrane-binding amphipathic helices, including ALPS motifs. A new module designed to identify amphipathic helices with properties similar to α-synuclein has recently been developed. Searches of both yeast and human protein databases has identified candidate α-synuclein-like amphipathic helices in numerous proteins. We prepared a set of probes, in which these helices are displayed at the end of the GMAPN coiled-coil. An initial study of their co-localization in yeast cells with a set of organelle markers demonstrates specific localization patterns, suggesting that these helices may have specific membrane targeting capacities. Further work will explore the question of whether these amphipathic helices are part of a novel class of α-synuclein-like curvature sensors.
|
6 |
Lipides et trafic : rôles de GBF1, facteur d’échange de la petite protéine G Arf1 / Lipids and Traffic : roles of the large Arf1-GEF GBF1Bouvet, Samuel 20 September 2013 (has links)
La cellule eucaryote compartimentalise ses tâches au sein d’organelles communiquant les unes avec les autres au moyen de vésicules de transport. Le trafic vésiculaire est contrôlé par des petites protéines G de la superfamille Ras, activées par un changement de nucléotide guanidique catalysé par un facteur d’échange (GEF). En particulier, au niveau du cis-Golgi la petite protéine G Arf1 est activée par GBF1, permettant le transport rétrograde des vésicules COPI vers le réticulum endoplasmique. Récemment, GBF1 a été impliqué dans d’autres fonctions, notamment dans le cycle réplicatif de certains virus ou dans le métabolisme des gouttelettes lipidiques.Les gouttelettes lipidiques sont les organelles ubiquitaires du stockage des lipides et ont un rôle majeur dans l’homéostasie des lipides à l’échelle de la cellule. Le trafic intracellulaire des ces organelles dynamiques serait contrôlé par des petites protéines G. Notre équipe à montré dans une précédente étude que GBF1 est localisé sur les gouttelettes lipidiques et est impliqué dans le recrutement de PLIN2 et de la lipase ATGL sur les gouttelettes lipidiques. Cette thèse montre, par des études de biologie cellulaire et de microscopie, que GBF1 possède un domaine de fixation aux phospholipides via une hélice amphipatique. Cette hélice est nécessaire et suffisante pour l’association aux gouttelettes lipidiques in cellulo. La régulation de la localisation de GBF1 repose sur l’interaction avec Rab1B (cascade entre Rab1 et Arf1 dans la voie sécrétoire précoce) ainsi que sur les interactions intramoléculaires entre les différents domaines de GBF1. / The eukaryotic cell physically separates its functions within several membrane-bound organelles, which communicate using vesicles. Vesicular trafficking is under the control of small GTPases that exist as an inactive GDP-bound form and an active GTP-bound form. The switch between GDP and GTP is catalyzed by a guanine nucleotide exchange factor (GEF). On cis-Golgi membranes, Arf1, activated by the large GEF GBF1, recruits the COPI coat. COPI coated vesicles ensure the retrograde transport from the Golgi to the ER. Recently, GBF1 has been implicated in other pathways, such as the life cycle of various viruses and lipid droplet metabolism.Lipid droplets (LD), the major lipid storage organelle, play a major role in lipid homeostasis within the cell. LDs are connected to membrane trafficking and are therefore under the control of GTPases. In previous studies, our team showed that GBF1 localizes around LDs and that it is required for protein loading onto the LD surface. Here, data support the idea that GBF1 localizes to the LD surface. Using cell biology tools and microscopy, we identified, within GBF1, a lipid binding domain. In this domain, a single amphipathic helix is necessary and sufficient for LD targeting in cells. The regulation of GBF1 localization relies on interaction with Rab1 (data support a Rab1-Arf1 cascade between the ER and the Golgi) and on intramolecular interactions between GBF1 domains.
|
7 |
Studies of protein structure, dynamics and protein-ligand interactions using NMR spectroscopyTengel, Tobias January 2007 (has links)
In the first part of the thesis, protein-ligand interactions were investigated using the chaperone LcrH, from Yersinia as target protein. The structure of a peptide encompassing the amphipathic domain (residue 278-300) of the protein YopD from Yersinia was determined by NMR in 40% TFE. The structure of YopD278-300 is a well defined α-helix with a β-turn at the C-terminus of the helix capping the structure. This turn is crucial for the structure as peptides lacking the residues involved in the turn are unstructured. NMR relaxation indicates that the peptide is not monomeric. This is supported by intermolecular NOEs found from residue Phe280 to Ile288 and Val292 indicative of a multimeric structure with the helical structures oriented in an antiparallel manner with hydrophobic residues forming the oligomer. The interaction with the chaperone LcrH was confirmed by 1H relaxation experiments and induced chemical shift changes in the peptide Protein-ligand interactions were investigated further in the second paper using a different approach. A wide range of substances were used in screening for affinity against the chaperones PapD and FimC from uropathogenic Escherichia coli using 1H relaxation NMR experiments, surface plasmon resonance and 19F NMR. Fluorine NMR proved to be advantageous as compared to proton NMR as it is straight forward to identify binding ligands due to the well resolved 19F NMR spectra. Several compounds were found to interact with PapD and FimC through induced line-broadening and chemical shift changes for the ligands. Data corroborate well with surface plasmon resonance and proton NMR experiments. However, our results indicate the substances used in this study to have poor specificity for PapD and FimC as the induced chemical shift is minor and hardly no competitive binding is observed. Paper III and IV is an investigation of the structural features of the allergenic 2S albumin Ber e 1 from Brazil nut. Ber e 1 is a 2S albumin previously identified as the major allergen of Brazil nut. Recent studies have demonstrated that endogenous Brazil nut lipids are required for an immune response to occur in vivo. The structure was obtained from 3D heteronuclear NMR experiments followed by simulated annealing using the software ARIA. Interestingly, the common fold of the 2S albumin family, described as a right-handed super helix with the core composed of a helix bundle, is not found in Ber e 1. Instead the C-terminal region is participating in the formation of the core between helix 3, 4 and 5. The dynamic properties of Ber e 1 were investigated using 15N relaxation experiments and data was analyzed using the model-free approach. The analysis showed that a few residues in the loop between helix 2 and 3 experience decreased mobility, compared to the rest of the loop. This is consistent with NOE data as long range NOEs were found from the loop to the core region of the protein. The anchoring of this loop is a unique feature of Ber e 1, as it is not found in any other structures of 2S albumins. Chemical shift mapping of Ber e 1 upon the addition of lipid extract from Brazil nut identified 4 regions in the protein where chemical shift perturbations were detected. Interestingly, all four structural clusters align along a cleft in the structure formed by helix 1-3 on one side and helix 4-5 on the other. This cleft is big enough to encompass a lipid molecule. It is therefore tempting to speculate whether this cleft is the lipid binding epitope in Ber e 1.
|
8 |
Catalysis at the Interface- Elucidation of the Activation Process and Coupling of Catalysis and Compartmentalization of the Peripheral Membrane Protein Pyruvate Oxidase from Escherichia coliSitte, Astrid 24 April 2013 (has links)
No description available.
|
9 |
Defining the Biochemical Factors Regulating IFITM3-Mediated Antiviral ActivityChesarino, Nicholas M. January 2016 (has links)
No description available.
|
Page generated in 0.069 seconds