• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude des mécanismes dépendants de GBF1 et impliqués dans la réplication du virus de l'hépatite C / Investigation of GBF1-dependent mechanisms involved in hepatitis C virus replication

Farhat, Rayan 05 November 2014 (has links)
L’infection par le virus de l’hépatite C (HCV) évolue dans la plupart des cas en hépatite chronique et peut conduire à une cirrhose ou un carcinome hépatocellulaire. Malgré les grandes avancées dans le traitement de l’hépatite C qui permettent d’inhiber ou même de bloquer l’évolution de cette infection vers la chronicité, l’absence de vaccin ainsi que sa répartition sur la surface du globe nous permet de classer cette pathologie en problème majeur de santé publique. La majorité des traitements actuels ciblent les protéines virales et leur fonction. Cependant un grand nombre de mécanismes du cycle viral de HCV reste à élucider.Comme pour la grande majorité des virus à ARN de polarité positive, la réplication de HCV a lieu dans des membranes cellulaires modifiées. Le remaniement de ces membranes est en lien étroit avec la voie de sécrétion précoce de la cellule. Il a été montré que GBF1, un facteur d’échange nucléotidique des protéines G de la famille Arf qui régulent la dynamique membranaire, est un facteur nécessaire à la réplication de HCV. L’inhibition de GBF1 par la bréfeldine A (BFA) inhibe la voie de sécrétion des protéines cellulaires néosynthétisées et inhibe aussi la réplication de HCV. Pour étudier le rôle de GBF1 pendant l’infection nous avons établi des lignées résistantes à la BFA. Deux de ces lignées étaient 100 fois plus résistantes que les lignées parentales à l’apoptose induite par la BFA, à l’inhibition de la sécrétion des protéines et à l’inhibition de l’infection par HCV. Ce phénotype était dû à une mutation ponctuelle dans le domaine catalytique sec7 de GBF1 de ces lignées. Un autre groupe de lignées était partiellement résistantes à l’inhibition de la sécrétion des protéines par la BFA tout en conservant un niveau d’infection proche de celui des lignées parentales dans les mêmes conditions. Ces résultats suggèrent que la fonction de GBF1 pendant l’infection HCV ne serait pas réduite à la régulation de la voie de sécrétion, évoquant ainsi un rôle additionnel de GBF1 nécessaire pour la réplication de HCV.Par ailleurs, nous avons pu montrer à l’aide des mutants de délétion de la protéine GBF1, que l’activité catalytique du domaine sec7 était nécessaire. Ceci suggère l’implication d’une protéine de la famille Arf dans l’activation de l’infection HCV via GBF1. L’implication de Arf dans l’infection HCV a été confirmée par la surexpression de dominants négatifs de la protéine Arf1 et par l’inhibition de l’activité de l’ArfGAP1 (régulateur des Arf) par l’inhibiteur spécifique QS11.Nous avons ensuite testé l’implication des différents Arf sensibles à l’inhibition par la BFA (Arf1, 3 ,4 et 5), dans l’infection HCV à l’aide de si-RNA. Il a été montré que ces protéines Arf possèdent des fonctions redondantes. Nos résultats confirment l’implication de Arf1 et indiquent que les 3 autres protéines sont aussi impliquées dans l’infection HCV. D’une manière intéressante, la déplétion combinée des Arf inhibe fortement l’infection HCV suggérant ainsi un rôle essentiel de certaines protéines Arf, probablement en activant des facteurs cellulaires nécessaires à l’étape de réplication. L’étude des facteurs cellulaires impliqués dans l’infection HCV permet de mieux comprendre l’étape de réplication et par conséquent le cycle viral de HCV. Par ailleurs, l’étude de ces facteurs pourrait permettre le développement éventuel de stratégies antivirales ciblant des facteurs de la cellule hépatique indépendamment du génotype viral, limitant ainsi le risque d’émergence de variants résistants au traitement. / The hepatitis C virus (HCV) infection progresses in most of the cases into a chronic hepatitis and can lead to cirrhosis or hepatocellular carcinoma. Despite the recent improvement of hepatitis C treatments, which inhibit or even block the progress of this infection into a chronic stage, a vaccine still not available and the worldwide distribution of the disease makes the hepatitis C a major public health problem. Most of the available treatments target viral proteins. However many mechanisms of the HCV life cycle remain unclear.As for many positive RNA viruses, HCV replication occurs in reorganized cellular membranes. These membrane rearrangements are closely linked to the early secretory pathway of the cell. It has been shown that GBF1, an exchange factor of small G proteins of the Arf family that regulates the membrane dynamics in the secretory pathway, is required for HCV replication. GBF1 inhibition by brefeldin A (BFA) inhibits the secretion of newly synthesized proteins and also inhibits HCV replication. To investigate the role of GBF1 in HCV infection, we isolated cell lines resistant to BFA. Two of these cell lines were 100 times more resistant than the parental cells to BFA-induced apoptosis, inhibition of proteins secretion and inhibition of HCV infection. This resistance was due to a point mutation in the catalytic sec7 domain of GBF1 of these cells. Another group of resistant cells was showing a partial resistance to the inhibition of proteins secretion while maintaining their sensitivity to the inhibition of HCV infection in the same conditions. These results suggest that GBF1 might fulfill another function, in addition to the regulation of the secretory pathway, during HCV replication. Using GBF1 deletion mutants we showed that the catalytic activity of the sec7 domain of GBF1 is required for HCV infection. This suggests that the function of GBF1 during HCV replication is mediated by Arf activation. The involvement of Arf was confirmed with the overexpression of restricted mutants of Arf1 and by the inhibition of ArfGAP1, another regulator of Arf function. We then tested the possible involvement of different Arfs (Arf1, 3, 4 and 5) in HCV infection. It has been reported that Arfs have redundant functions. The results confirm the involvement of Arf1 and indicate that all the other BFA-sensitive Arfs (Arf3, Arf4 and Arf5) are also involved in HCV infection. The combined knockdown of Arfs strongly inhibited HCV replication, showing that the Arf proteins are working together in HCV replication probably by activating several host factors required for the virus life cycle.The study of cellular factors required for HCV infection is crucial to better understand the interaction of the virus with the host cell and thus the whole HCV life cycle. This could help to develop new therapies targeting the host cell, regardless of viral genotypes and reducing the risk of emergence of new resistant forms.
2

Functional characterization of class I Arfs and their Guanine Nucleotide Exchange Factors at the Golgi complex

Manolea, Florin Iulian Unknown Date
No description available.
3

Functional characterization of class I Arfs and their Guanine Nucleotide Exchange Factors at the Golgi complex

Manolea, Florin Iulian 11 1900 (has links)
We examined the function of ADP-ribosylation factors (Arfs) and their guanine nucleotide exchange factors (GEFs) that regulate recruitment of coat proteins on the Golgi complex. The large ArfGEF GBF1 localizes at the cis-Golgi complex while BIG1 and BIG2 localize at the trans-Golgi network (TGN). Complementary overexpression and RNA-based knockdown approaches established that GBF1 but not BIGs, is required for COPI recruitment, Golgi stack maintenance and sub-compartmentalization while BIGs appear specialized for clathrin adaptor recruitment and for assembly and maintenance of the TGN. Our observations disprove two widely accepted mechanisms for cargo export by establishing that COPII is the only coat required for sorting and export from the ER exit sites and that BIGs are not required for traffic of the cargo protein VSVG to the cell surface. Furthermore, we provide evidence that may ultimately explain how these ArfGEFs regulate different coats in spite of their well-characterized promiscuity towards class I and II Arfs. We prove for the first time that Arf3 is activated uniquely by BIGs at the TGN. Also, contrary to expectations, we demonstrate that Arf3 differs from Arf1 in regard to localization pattern as well as temperature sensitivity of membrane recruitment. Shifting temperature to 20C for 2 hours, a method known to block cargo in trans-Golgi compartments, caused a dramatic redistribution Arf3 but not Arf1. Redistribution of Arf3 from Golgi membranes upon shift to 20C was not immediate but occurred gradually over 20 minutes. Arf1 and Arf3 differ in sequence only in two short regions at the N- and C-termini. Analysis of swap constructs established that two amino acids in the N-terminal region of Arf3 and Arf1 are responsible for directing the temperature sensitivity while two amino acids in the C-terminus directs Arf3s specific localization. Arf3 knockdown had no impact on any of the markers tested or on VSVG trafficking to the cell surface. My work provides solid evidence to support that ArfGEFs function at different compartments to regulate membrane recruitment of specific coat proteins, and may also regulate distinct sets of Arfs that localize preferentially to these particular compartments.
4

Étude sur l'interaction entre le virus de l'hépatite C et le facteur cellulaire proviral GBF1 / Exploring interactions between hepatitis C virus proteins and the proviral cellular factor GBF1

Lebsir, Nadjet 19 December 2018 (has links)
GBF1 a émergé autant que facteur cellulaire nécessaire pour la réplication de plusieurs virus à ARN. Au cours de l’infection par le virus de l’hépatite C (VHC), GBF1 est essentiel pour les étapes précoces de la réplication, bien qu’il soit dispensable lorsque celle-ci est établie. Afin de mieux comprendre la fonction de GBF1 dans la régulation de l'infection par le VHC, nous avons tenté d’explorer les interactions entre GBF1 et les protéines du VHC. Ainsi, grâce à l’approche du double hybride en levure et par co-immunoprécipitation et par PLA (proximity ligation assay), nous avons pu montrer que NS3 interagit avec GBF1. De plus, NS3 semble interférer avec la localisation subcellulaire de GBF1 dans des cellules exprimant NS3. Cette interaction a été retrouvée entre le domaine protéase de NS3 et Sec7, le domaine catalytique de GBF1. Un crible sur des mutations altérant l’interaction GBF1-NS3, par double hybride en levure, a permis révéler un mutant NS3 (N77D de la souche Con1) qui est non-réplicatif malgré une activité protéase bien conservée. De plus, le résidu muté est exposé à la surface, ce qui suggère qu’il pourrait appartenir à la zone d’interaction de NS3 avec GBF1. La mutation correspondante dans la souche JFH1 produit le même phénotype que la souche Con1 du VHC. L’ensemble des résultats révèlent l’existence d’une interaction entre GBF1 et NS3 et suggèrent qu’une altération de cette interaction est délétère pour la réplication du VHC. / GBF1 has emerged as a host factor required for the replication of RNA viruses of different families. During the hepatitis C virus (HCV) life cycle, GBF1 performs a critical function at the onset of replication, but is dispensable when the replication is established. To better understand how GBF1 regulates HCV infection, we have looked for interactions between GBF1 and HCV proteins. NS3 was found to interact with GBF1 in yeast two-hybrid, in co-immunoprecipitation and in proximity ligation assays, and to interfere with GBF1 function and alter GBF1 intracellular localization in cells expressing NS3. The interaction was mapped to the Sec7 domain of GBF1 and the protease domain of NS3. A yeast two-hybrid screen for mutations altering NS3-GBF1 interaction yielded an NS3 mutant (N77D, Con1 strain) that is non-replicative despite conserved protease activity. The mutated residue is exposed at the surface of NS3, suggesting it could be part of the domain of NS3 that interacts with GBF1. The corresponding mutation in JFH-1 strain (S77D) produces the same phenotype. Our results provide evidence for an interaction between NS3 and GBF1 and suggest that an alteration of this interaction is detrimental to HCV replication.
5

Lipides et trafic : rôles de GBF1, facteur d’échange de la petite protéine G Arf1 / Lipids and Traffic : roles of the large Arf1-GEF GBF1

Bouvet, Samuel 20 September 2013 (has links)
La cellule eucaryote compartimentalise ses tâches au sein d’organelles communiquant les unes avec les autres au moyen de vésicules de transport. Le trafic vésiculaire est contrôlé par des petites protéines G de la superfamille Ras, activées par un changement de nucléotide guanidique catalysé par un facteur d’échange (GEF). En particulier, au niveau du cis-Golgi la petite protéine G Arf1 est activée par GBF1, permettant le transport rétrograde des vésicules COPI vers le réticulum endoplasmique. Récemment, GBF1 a été impliqué dans d’autres fonctions, notamment dans le cycle réplicatif de certains virus ou dans le métabolisme des gouttelettes lipidiques.Les gouttelettes lipidiques sont les organelles ubiquitaires du stockage des lipides et ont un rôle majeur dans l’homéostasie des lipides à l’échelle de la cellule. Le trafic intracellulaire des ces organelles dynamiques serait contrôlé par des petites protéines G. Notre équipe à montré dans une précédente étude que GBF1 est localisé sur les gouttelettes lipidiques et est impliqué dans le recrutement de PLIN2 et de la lipase ATGL sur les gouttelettes lipidiques. Cette thèse montre, par des études de biologie cellulaire et de microscopie, que GBF1 possède un domaine de fixation aux phospholipides via une hélice amphipatique. Cette hélice est nécessaire et suffisante pour l’association aux gouttelettes lipidiques in cellulo. La régulation de la localisation de GBF1 repose sur l’interaction avec Rab1B (cascade entre Rab1 et Arf1 dans la voie sécrétoire précoce) ainsi que sur les interactions intramoléculaires entre les différents domaines de GBF1. / The eukaryotic cell physically separates its functions within several membrane-bound organelles, which communicate using vesicles. Vesicular trafficking is under the control of small GTPases that exist as an inactive GDP-bound form and an active GTP-bound form. The switch between GDP and GTP is catalyzed by a guanine nucleotide exchange factor (GEF). On cis-Golgi membranes, Arf1, activated by the large GEF GBF1, recruits the COPI coat. COPI coated vesicles ensure the retrograde transport from the Golgi to the ER. Recently, GBF1 has been implicated in other pathways, such as the life cycle of various viruses and lipid droplet metabolism.Lipid droplets (LD), the major lipid storage organelle, play a major role in lipid homeostasis within the cell. LDs are connected to membrane trafficking and are therefore under the control of GTPases. In previous studies, our team showed that GBF1 localizes around LDs and that it is required for protein loading onto the LD surface. Here, data support the idea that GBF1 localizes to the LD surface. Using cell biology tools and microscopy, we identified, within GBF1, a lipid binding domain. In this domain, a single amphipathic helix is necessary and sufficient for LD targeting in cells. The regulation of GBF1 localization relies on interaction with Rab1 (data support a Rab1-Arf1 cascade between the ER and the Golgi) and on intramolecular interactions between GBF1 domains.
6

GBF1 est un facteur cellulaire requis pour la réplication du virus de l'hépatite C

Goueslain, Lucie 04 February 2010 (has links) (PDF)
L'hépatite C est un problème de santé publique majeur aggravé par l'efficacité limitée des thérapies actuelles et l'absence de vaccin. Il est donc important d'identifier de nouvelles cibles thérapeutiques potentielles et pour cela une meilleure connaissance du cycle infectieux du virus de l'hépatite C (VHC) est indispensable. Comme pour de nombreux autres virus à ARN de polarité positive, l'étape de réplication du VHC est associée à d'importants remaniements membranaires qui conduisent à la formation d'un réseau membranaire désigné membranous web et de structures membranaires plus petites associées au reticulum endoplasmique. Cependant, la formation des complexes de réplication du VHC, en association étroite avec ces membranes cellulaires modifiées reste énigmatique. Au niveau cellulaire, de petites GTPases sont connues pour réguler la dynamique des membranes. Nos travaux montrent que l'infection par le VHC est inhibée, de façon dose-dépendante, par la bréfeldine A (BFA), un inhibiteur spécifique de l'action de GTPases de la famille ARF. L'activation des petites GTPases ARF est médiée par des facteurs d'échange nucléotidiques. En utilisant des ARN interférants ciblant les trois facteurs d'échange nucléotidique sensibles à la BFA nous avons observé que seule la réduction de l'expression de l'un d'entre eux, appelé GBF1, inhibe l'infection par le VHC. Ces résultats ont été confirmés par l'utilisation d'un inhibiteur chimique spécifique. D'autre part, la surexpression d'un mutant de GBF1 résistant à la BFA permet de restaurer l'infection par le VHC en présence de BFA. Par ailleurs, des analyses en immunofluorescence et microscopie électronique réalisées dans un contexte non réplicatif montrent que la BFA n'inhibe pas les réarrangements membranaires associés à la mise en place du membranous web. Collectivement nos résultats suggèrent que GBF1 est impliqué dans l'activité des complexes de réplication du VHC et notre travail établit un lien entre la voie de sécrétion de la cellule hôte et la réplication de l'ARN du VHC.
7

Characterization of GBF1, Arfs and COPI at the ER-Golgi intermediate compartment and mitotic Golgi clusters

Chun, Justin Unknown Date
No description available.
8

Characterization of GBF1, Arfs and COPI at the ER-Golgi intermediate compartment and mitotic Golgi clusters

Chun, Justin 11 1900 (has links)
Protein trafficking between the endoplasmic reticulum (ER) and Golgi complex is regulated by the activity of ADP-ribosylation factors (Arfs). Arf activation by guanine nucleotide exchange factors (GEFs) leads to the recruitment of the coatomer protein COPI and vesicle formation. By using fluorescently-tagged proteins in live cells, we have been able to identify novel functions for Arfs and the Arf-GEF GBF1 at the ER-Golgi intermediate compartment (ERGIC) and mitotic Golgi clusters. We first focused on Arf function at the ERGIC after observing both class I (Arf1) and class II (Arfs 4 and 5) Arfs at this structure. We discovered that class II Arfs remain bound to ERGIC membranes independently of GBF1 activity following treatment with brefeldin A (BFA). Further characterization of the class II Arfs using additional pharmacological agents such as Exo1 and inactive mutant forms of Arf4 demonstrated that the class II Arfs associate with the ERGIC membrane via receptors distinct from GBF1. Our work suggests that GBF1 accumulation on membranes in the presence of BFA is due to loss of Arfs from the membrane rather than the formation of an abortive complex with Arf and GBF1. Next, while studying GBF1 in live cells, we unexpectedly observed GBF1 localizing to large fragmented structures during mitosis. We identified these structures as mitotic Golgi fragments that are positive for GBF1 and COPI throughout mitosis. Again using live cells treated with BFA and Exo1, we demonstrated that GBF1 concentrates on these mitotic fragments suggesting that they are derived from Golgi membranes. By colocalization studies and fluorescence recovery after photobleaching, we demonstrated that these mitotic fragments maintain a cis-to-trans subcompartmental Golgi polarization and membrane dynamics of GBF1 similar to interphase cells. Interestingly, inactivation of GBF1 and loss of COPI from the membranes of the mitotic Golgi fragments did not delay progressing through mitosis. Our results from our second project indicate for the first time that the mitotic Golgi clusters are bona fide Golgi structures that exist throughout mitosis with a functional COPI machinery.

Page generated in 0.028 seconds