• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 6
  • Tagged with
  • 24
  • 24
  • 15
  • 13
  • 12
  • 12
  • 9
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Rank Stratification of Spaces of Quadrics and Moduli of Curves

Kadiköylü, Irfan 24 May 2018 (has links)
In dieser Arbeit untersuchen wir Varietäten singulärer, quadratischer Hyperflächen, die eine projektive Kurve enthalten, und effektive Divisoren im Modulraum von Kurven, die mittels verschiedener Eigenschaften von quadratischen Hyperflächen definiert werden. In Kapitel 2 berechnen wir die Klasse des effektiven Divisors im Modulraum von Kurven mit Geschlecht g und n markierten Punkten, der als der Ort von solchen markierten Kurven definiert ist, dass das Projektion der kanonischen Abbildung der Kurve von den markierten Punkten auf einer quadratischen Hyperfläche liegt. Mithilfe dieser Klasse zeigen wir, dass die Modulräume mit Geschlecht 16, 17 und 8 markierten Punkten Varietäten von allgemeinem Typ sind. In Kapitel 3 stratifizieren wir den Raum von quadratischen Hyperflächen, die eine projektive Kurve enthalten, mithilfe des Rangs dieser Hyperflächen. Wir zeigen, dass jedes Stratum die erwartete Dimension hat, falls die Kurve ein allgemeines Element des Hilbertschemas ist. Mit Rücksicht auf Rang von quadratischen Hyperflächen, eine ähnliche Konstruktion wie in Kapitel 2 ergibt neue Divisoren im Modulraum von Kurven. Wir berechnen die Klasse von diesen Divisoren und zeigen, dass der Modulraum von Kurven mit Geschlecht 15 und 9 markierten Punkten eine Varietät von allgemeinem Typ ist. In Kapitel 4 präsentieren wir unterschiedliche Resultate, die mit Themen von vorigen Kapiteln im Zusammenhang stehen. Zum Ersten berechnen wir die Klasse von Divisoren im Modulraum von Kurven, die als die Orte von Kurven definiert sind, wo die maximale Rang Vermutung nicht gilt. Zweitens zeigen wir, dass jedes Geradenbündel als Tensorprodukt von zwei Geradenbündeln mit zwei Schnitten geschrieben werden kann, falls die Kurve allgemein ist und eine gewisse numerische Bedingung erfüllt ist. Zuletzt benutzen wir bekannte Divisorklassen zu zeigen, dass der Modulraum von Kurven mit Geschlecht 12 und 10 markierten Punkten eine Varietät von allgemeinem Typ ist. / In this thesis, we study varieties of singular quadrics containing a projective curve and effective divisors in the moduli space of pointed curves defined via various constructions involving quadric hypersurfaces. In Chapter 2, we compute the class of the effective divisor in the moduli space of n-pointed genus g curves, which is defined as the locus of pointed curves such that the projection of the canonical model of the curve from the marked points lies on a quadric hypersurface. Using this class, we show that the moduli spaces of 8-pointed genus 16 and 17 curves are varieties of general type. In Chapter 3, we stratify the space of quadrics that contain a given curve in the projective space, using the ranks of the quadrics. We show, in a certain numerical range, that each stratum has the expected dimension if the curve is general in its Hilbert scheme. By incorporating the datum of the rank of quadrics, a similar construction as the one in Chapter 2 yields new divisors in the moduli space of pointed curves. We compute the class of these divisors and show that the moduli space of 9-pointed genus 15 curves is a variety of general type. In Chapter 4, we present miscellaneous results, which are related with our main work in the previous chapters. Firstly, we consider divisors in the moduli space of genus g curves, which are defined as the failure locus of maximal rank conjecture for hypersurfaces of degree greater than two. We illustrate three examples of such divisors and compute their classes. Secondly, using the classical correspondence between rank 4 quadrics and pencils on curves, we show that the map that associates to a pair of pencils their tensor product in the Picard variety is surjective, when the curve is general and obvious numerical assumptions are satisfied. Finally, we use divisor classes, that are already known in the literature, to show that the moduli space of 10-pointed genus 12 curves is a variety of general type.
22

Divisors on moduli spaces of level curves

Bruns, Gregor 04 January 2017 (has links)
In dieser Arbeit untersuchen wir drei Fragestellungen. Zwei beschäftigen sich mit Divisoren auf Modulräumen von Kurven mit Levelstruktur, die dritte handelt von Stabilitätseigenschaften der Normalenbündel von kanonischen Kurven. Die erste Frage, die in Kapitel 2 studiert wird, beschäftigt sich mit der Kodairadimension des Modulraums R15,2 von Prym-Varietäten vom Geschlecht 15. Wir studieren einen neuen Divisor auf diesem Modulraum und berechnen seine Klasse in der Standardbasis der Picardgruppe. Mit Hilfe dieser Klasse können wir schlussfolgern, dass R15,2 von allgemeinem Typ ist. In Kapitel 3 setzen wir unsere Untersuchung von Kurven mit Levelstruktur fort und untersuchen für jede Primzahl l Theta-Divisoren auf den Modulräumen R6,l und R8,l. Die Divisoren werden mit Hilfe der Mukai-Bündel von Kurven vom Geschlecht 6 beziehungsweise 8 definiert. Diese Bündel liefern kanonische Einbettungen unserer Kurven in Grassmann-Varietäten und beschreiben fundamentale geometrische Aspekte von Kurven dieser Geschlechter. Indem wir die Klasse des Divisors für g = 8 und l = 3 berechnen, können wir zeigen, dass R8,3 ebenfalls von allgemeinem Typ ist. Schließlich studieren wir in Kapitel 4 die Stabilität des Normalenbündels kanonischer Kurven vom Geschlecht 8 und beweisen, dass das Bündel auf einer generischen Kurve stabil ist. Für kanonische Kurven vom Geschlecht 9 beweisen wir die Stabilität zumindest im Bezug auf Unterbündel von niedrigem Rang. Ebenfalls liefern wir zusätzliche Hinweise für die Vermutung von M. Aprodu, G. Farkas und A. Ortega, die besagt, dass eine generische kanonische Kurve jedes Geschlechts g >= 7 ein stabiles Normalenbündel besitzt. / In this thesis we investigate three questions. Two are about divisors on moduli spaces of level curves, and about the consequences for the birational geometry of these spaces. The third asks about the stability properties of normal bundles of canonical curves. The first question, to be studied in Chapter 2, is about the Kodaira dimension of the moduli space R15,2 of Prym varieties of genus 15. We study a new divisor on this space and calculate its class in terms of the standard basis of the Picard group. This allows us to conclude that R15,2 is of general type. Continuing the study of level curves in Chapter 3, we investigate, for every l, theta divisors on R6,l and R8,l defined in terms of the Mukai bundle of genus 6 and 8 curves, respectively. These bundles provide canonical embeddings of our curves in Grassmann varieties and describe fundamental aspects of the geometry of curves of these genera. Using the class of the divisor for g = 8 and l = 3, we are able to prove that R8,3 is of general type as well. Finally, in Chapter 4 we study the stability of the normal bundle of canonical genus 8 curves and prove that on a general curve the bundle is stable. For canonical genus 9 curves we prove stability at least with respect to subbundles of low ranks. We also provide some more evidence for the conjecture of M. Aprodu, G. Farkas, and A. Ortega that a a general canonical curve of every genus g >= 7 has stable normal bundle.
23

Hilbert-Kunz functions of surface rings of type ADE / Hilbert-Kunz Funktionen zweidimensionaler Ringe vom Typ ADE

Brinkmann, Daniel 27 August 2013 (has links)
We compute the Hilbert-Kunz functions of two-dimensional rings of type ADE by using representations of their indecomposable, maximal Cohen-Macaulay modules in terms of matrix factorizations, and as first syzygy modules of homogeneous ideals.
24

Aspects of the geometry of Prym varieties and their moduli

Maestro Pérez, Carlos 25 October 2021 (has links)
In dieser Doktorarbeit untersuchen wir einige Modulräume der Prym-Paaren, Prym-Varietäten und Spin-Kurven. Nachdem der passende theoretische Rahmen eingeführt wird, erhalten wir neue Ergebnisse zu zwei verschiedenen Aspekten ihrer Geometrie, die wir in zwei entsprechenden Kapiteln beschreiben. In Kapitel 1 betrachten wir die universelle Prym-Varietät über dem Modulraum R_g der Prym-Paaren vom Geschlecht g und bestimmen ihre Unirationalität für g=3. Dazu bilden wir eine explizite rationale Parametrisierung der universellen 2-fachen Prym-Kurve über R_3, die die universelle Prym-Varietät durch die globale Version der Abel-Prym-Abbildung dominiert. Darüber hinaus passen wir den Beweis an den Rahmen von Nikulin-Flächen an und zeigen, dass die universelle doppelte Nikulin-Fläche ebenfalls unirational ist. In Kapitel 2 untersuchen wir die Wechselwirkung zwischen R_g und dem Modulraum S_g der (stabilen) Spin-Kurven vom Geschlecht g. Wenn man den Divisor der Kurven, die mit einem verschwindenden Thetanull ausgestattet sind, von S_g^+ nach R_g versetzt, erhält man zwei geometrische Divisoren der (stabilen) Prym-Kurven mit einem verschwindenden Thetanull. Wir verwenden Testkurventechniken, um die Klassen dieser (Prym-Null-)Divisoren für g>=5 zu berechnen, und werten die Prymnull-Klassen auf einigen weiteren Familien von Kurven aus, um ihre verschwindenden Thetanulls zu analysieren. Darüber hinaus diskutieren wir am Ende von Kapitel 2 eine mögliche Kompaktifizierung des Modulraums der Kurven, die eine doppelte Quadratwurzel tragen. Anschließend untersuchen wir den Rand des Modulraums RS_g der (stabilen) Prym-Spin-Kurven vom Geschlecht g und überprüfen die Prymnull-Klassen anhand des Diagramms R_g<--RS_g-->S_g. Zum Schluss schlagen wir eine Erweiterung des Produkts von Wurzeln, das über glatten Kurven durch das Tensorprodukt definiert ist, zu einer Operation auf stabilen Doppelwurzeln vor. / In this thesis, we study several moduli spaces of Prym pairs, Prym varieties, and spin curves. After the appropriate theoretical framework is introduced, we obtain new results concerning two different aspects of their geometry, which we describe across two corresponding chapters. In Chapter 1, we consider the universal Prym variety over the moduli space R_g of Prym pairs of genus g, and determine its unirationality for g=3. To do this, we build an explicit rational parametrization of the universal 2-fold Prym curve over R_3, which dominates the universal Prym variety through the global version of the Abel-Prym map. Furthermore, we adapt the proof to the setting of Nikulin surfaces and show that the universal double Nikulin surface is also unirational. In Chapter 2, we explore the interaction between R_g and the moduli space S_g of (stable) spin curves of genus g. When the divisor of curves equipped with a vanishing theta-null is moved from S_g^+ to R_g, it yields two geometric divisors of (stable) Prym curves with a vanishing theta-null. We use test curve techniques to compute the classes of these (Prym-null) divisors for g>=5, and evaluate the Prym-null classes on some more families of curves in order to analyse their vanishing theta-nulls. In addition, at the end of Chapter 2 we discuss a potential compactification of the moduli space of curves carrying a double square root. We then examine the boundary of the moduli space RS_g of (stable) Prym-spin curves of genus g and check the Prym-null classes against the diagram R_g<--RS_g-->S_g. Finally, we propose an extension of the product of roots, defined over smooth curves by the tensor product, to an operation on stable double roots.

Page generated in 0.061 seconds