• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 10
  • 8
  • 6
  • 5
  • 4
  • 1
  • Tagged with
  • 62
  • 62
  • 62
  • 35
  • 20
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The role of alumina in the mitigation of alkali-silica reaction

Warner, Skyler J. 13 March 2012 (has links)
The use of fly ash as a supplementary cementitious material (SCM) has increased in the last century due to its various environmental benefits as a recycled product. Within the last 60 years, it has been found that it can be used to effectively control damage induced by Alkali-Silica Reaction. However, it is not completely understood how to properly assign a dosage of fly ash to control the reaction. This depends greatly on the fly ash characteristics (e.g. composition, particle size, and reactivity), the reactivity of the aggregate (e.g. high to low reactivity level) and the environmental exposure conditions. The characteristics of the fly ash depend on the coal source being burned and the burning conditions that result in the fly ash formation. A major concern when supplementing cement with fly ash for ASR mitigation is the effect of the alkali contribution of the fly ash to the concrete pore solution. Current test methods cannot accurately determine the alkali contribution of fly ashes and there is no standardized test method to doing so. When contributed by the implementation of a SCM, alumina has been found to play a role in the ability of an SCM to mitigate ASR-induced damage. It has been observed that fly ashes containing higher levels of alumina (18-25%) tend to improve concrete durabilty more effectively when compared to fly ashes with lower levels of alumina. Additionally, the use of metakaolin, which is composed of 45-50% alumina, has been found to lessen expansion with a lower percentage of cement replacement than would be required if fly ash is used. Furthermore, the use of fly ash with another SCM material, a high quality ultra-fine fly ash or alumino-siliceous metakaolin, in ternary blends may improve the performance of fly ash resulting in a broadening of the spectrum of SCMs usable for ASR mitigation. For successful use of SCMs, it is important to develop an understanding of the alkalisilica reaction and the ability of such SCMs to control expansion. This report provides an overview of alkali-silica reaction and the use of fly ash and metakaolin as SCMs to mitigate expansion due to the reaction, with an emphasis on the role of alumina when contributed from the two materials. / Graduation date: 2012
32

Performance of Reinforced Concrete Column Lap Splices

Alberson, Ryan M. 14 January 2010 (has links)
Cantilevered reinforced concrete columns with a lap splice of the longitudinal reinforcement near the base can induce high moment demands on the splice region when lateral loads are present on the structure. Code design specifications typically require a conservative splice length to account for these high moment demands and their consequences of bond failure. The required splice length is calculated as a function of required development length, which is a function of the bond between the reinforcement and the surrounding concrete, and a factor depending on the section detailing. However, the effects of concrete deterioration due to alkali silica reaction (ASR) and/or delayed ettringite formation (DEF) may weaken the bond of the splice region enough to overcome the conservative splice length, potentially resulting in brittle failure of the column during lateral loading. This thesis presents the following results obtained from an experimental and analytical program. * Fabrication of large-scale specimens of typical column splice regions with concrete that is susceptible to ASR/DEF deterioration * Measurement of the large-scale specimen deterioration due to ASR/DEF accelerated deterioration * Analytical model of the column splice region based on flexure theory as a function of the development length of the reinforcement and a factor to account for deterioration of the bond due to ASR/DEF * Experimental behavior of two large-scale specimens that are not influenced by premature concrete deterioration due to ASR/DEF (control specimens). This experimental data is also used to calibrate the analytical model. The conclusions of the research are that the analytical model correlates well with the experimental behavior of the large-scale control specimens not influenced by ASR/DEF. The lap splice region behaved as expected and an over-strength in the splice region is evident. To account for ASR/DEF damage, the analytical model proposes a reduction factor to decrease the bond strength of the splice region to predict ultimate performance of the region with different levels of premature concrete deterioration.
33

Effects from Alkali-Silica Reacton and Delayed Ettringite Formation on Reinforced Concrete Column Lap Splices

Eck, Mary 2012 May 1900 (has links)
Reinforced concrete bridge columns can deteriorate prematurely due to the alkali-silica reaction (ASR) and/or delayed ettringite formation (DEF), causing internal expansion and cracking on the surface of the concrete. The performance of the longitudinal reinforcement lap splice in deteriorated concrete columns is the focus in this research. This thesis presents the results from the deterioration of large-scale specimens constructed and placed in an environment susceptible to ASR/DEF deterioration, the experimental results from four-point and three-point structural load tests, and an analytical model based on bending theory characterizing the specimen behavior during the structural load tests. Fourteen large-scale specimens were constructed, placed in an environment to accelerate the ASR/DEF deterioration mechanisms, and instrumented both internally and externally to measure the internal concrete expansions, and surface expansions and crack widths. In addition, two control specimens were constructed and kept in a laboratory, preventing ASR/DEF deterioration. Post-tensioning was used to simulate axial load on a bridge column. Structural load tests were performed on eight specimens with no ASR/DEF damage to late stage ASR and minimal DEF damage. Comparing the specimen behaviors during the loading testing, it was found that the yield strength increased about 5-15%, and post-cracking stiffness up to first yielding of the deteriorated specimens was about 25-35% stiffer than the control specimens. The increased specimen strength and stiffness likely occurred from volumetric expansion due to ASR/DEF damage which engaged the reinforcement, further confining the concrete and causing a beneficial increase in the axial post-tensioning load. The analytical model matched the control specimens well and matched the non-control specimens when the axial load was increased.
34

Alkali-silica Rectivity And Activation Of Ground Perlite-containing Cementitious Mixtures

Unsal Saglik, Asli 01 November 2008 (has links) (PDF)
Perlite is a volcanic mineral. The latest investigations on ground perlite showed that it is suitable for pozzolanic usage. Thus, it is of vital importance especially for countries rich in perlite such as Turkey. The aim of this study is to investigate the advantages and problems associated with using perlite in concrete and to identify accurate methods and amounts of use for producing durable cementitious mixtures. Within the scope of this study, the alkali-silica reactivity of perlite containing cementitious mixtures were compared using four different methods. Expansion mechanism of the mixtures were tried to be understood by measuring the alkalinity of bath waters. In order to cope with early strength decreases caused by perlite addition, activation of the mixtures by chemical and thermal methods were attempted. It was found that chloride containing chemicals are very effective at later ages and sodium containing chemicals are more effective at early ages. Sodiumhydroxide addition to the perlite containing mixtures was found to be detrimental to both the initial and late-age strengths of mortars. It was concluded that perlite addition generally results in a decrease in alkali-silica expansions. However, the expansion of concrete samples should be investigated comprehensively. Thermal curing at high temperatures resulted in a rapid increase at 1-day strengths, however, for better ultimate strengths lower thermal treatments or no-thermal curing were found to be more effective. Compared to the traditional portland cement concretes, high-volume ground perlite concretes have environmental and economical advantages.
35

Ultra-accelerated assessment of alkali-reactivity of aggregates by nonlinear acoustic techniques

Chen, Jun 06 July 2010 (has links)
This research develops two novel experimental techniques based on nonlinear acoustics/ultrasound to provide an ultra-accelerated characterization of alkali-reactivity of aggregates. Alkali-silica reaction (ASR) is a deleterious reaction occurring between reactive siliceous minerals present in some aggregates and alkalis mainly contributed by the cement, but also present in some deicing chemicals. With increasing reports of ASR-induced damage in transportation structures, there is a critical need for fast and reliable test methods for the screening of aggregates and aggregate/paste combinations. Currently, the accelerated mortar bar test (AMBT), which measures expansion, is the most commonly used test method. Also used is the concrete prism test (CPT), another expansion-based method, which requires at least one year testing time, limiting the practical utility of this method. In addition, petrographic analysis can be performed to identify potentially reactive minerals in aggregates but requires training and may not be appropriate for assessment of aggregate/paste combinations. Finally, linear acoustic methods such as wave speed and attenuation measurements can be used for the assessment of ASR, but the sensitivity of linear acoustic methods to ASR-induced damage is considered to be relatively low. Therefore, critical limitations exist in the existing test methods. In light of recent advances in nonlinear acoustics (which are more sensitive to small-scale damage than linear acoustics), the purpose of this research is the development and assessment of an accelerated method for evaluating the potential for alkali reactivity in aggregate and aggregate/paste combinations by combining advanced ultrasonic methods with standard test procedures. In fact, two nonlinear acoustic methods are developed under this research - nonlinear wave modulation spectroscopy (NWMS) and nonlinear impact resonance acoustic spectroscopy (NIRAS) - and are used to characterize the changes in material nonlinearity as a result of the progressive ASR damage during the standard mortar bar and concrete prism testing. Following the AMBT and CPT, nonlinear acoustic techniques are applied to both mortar bars and concrete prism samples. Nonlinearity parameters are defined as the indicator of growing ASR damage, and measurement results clearly show that these nonlinearity parameters are more sensitive to the ASR damage than the linear parameters used in the linear acoustic measurements, particularly at early ages. Different aggregates with varying alkali-reactivity are effectively distinguished with the proposed experimental techniques in a timely manner, particularly for those aggregates with similar levels of reactivity, as determined by AMBT. The effect of a Class C fly ash addition on nonlinear properties was also investigated using the NIRAS measurements through a comparison of test results between mortar samples blended with fly ash and without fly ash. As complementary supports of the experimental results, petrographic analyses and theoretical modeling are also performed, and these results are well correlated with results from the NWMS and NIRAS techniques. Through a comparison with results from accompanying expansion measurements and linear acoustic methods, the proposed nonlinear acoustic techniques show their advantages to accelerate the assessment of alkali-reactivity of aggregates. Under AMBT, reactive aggregates were identifiable as early as a few days of testing. With CPT, reactive aggregates were differentiated as early as a few weeks. Overall, the coupling of the developed nonlinear test methods with standard expansion tests suggests that test durations could be potentially reduced by half, especially for AMBT tests.
36

Nonlinear resonance methods for assessing ASR susceptibility during concrete prism testing (CPT)

Lesnicki, Krzysztof Jacek 17 May 2011 (has links)
This research focuses on the characterization of damage accumulation in concrete specimens. Specifically, a nonlinear vibration technique is used to characterize the damage introduced by ongoing alkali-silica reactions (ASR). The nonlinear resonance testing consists of an analysis of the frequency response of concrete specimens subjected to impact loading. ASR introduces a third gel like phase, which can be expansive in the presence of moisture. The result of ASR is the formation of microcracks and debonding between aggregate and cement phases. Collectively, these changes act to increase the specimens' nonlinearity. As a result, it is found that the concrete samples exhibit nonlinear behavior; mainly a decrease in resonance frequency with an increasing level of excitation strain. The relationship between the amplitude of the response and the amount of frequency shift is used as a parameter to describe the nonlinearity of the specimen. The specimens used in this research are of varying reactivity with respect to ASR, which is induced in accordance with ASTM C 1293. The level of nonlinearity is used as a measure of damage caused by the progress of ASR throughout the one year test duration. These nonlinear resonance results are compared to the traditional measures of expansion described in the standard. The robustness and repeatability of the proposed technique is also investigated by repeated testing of samples assumed to be at a specific damage state. Finally, a petrographic staining technique is used to complement nonlinearity measurements and to further gain understanding of ASR. The results of this study show that the proposed nonlinear resonance methods are very sensitive to microstructural changes and have great potential for quantitative damage assessment in concrete.
37

An investigation of means of mitigating alkali-silica reaction in hardened concrete

Markus, Reid Patrick 21 November 2013 (has links)
This research project, funded by the Federal Highway Administration (FHWA Project DTFH61-02-C-0097), focuses mainly on alkali-silica reaction (ASR) and techniques to mitigate the effects of alkali-silica reaction in hardened concrete. A large portion of this report discusses the construction and design of an outdoor exposure site built at the University of Texas at Austin where the goal was to cast field representative concrete elements with laboratory precision and expose them to real environmental conditions. The elements were monitored for expansion and deterioration. At discrete expansion levels a range of mitigation methods were implemented on the structures. After the concrete elements were treated, long-term monitoring was conducted to determine the best approach to provide effective suppression of alkali-silica reaction in the various element types. / text
38

Influência da incorporação de cinza da casca do arroz e sílica ativa no cimento Portland frente à reação álcali-sílica : desenvolvimento de uma nova proposta de método para avaliação da RAS em materiais suplementares ao cimento Portland

Trindade, Guilherme Hoehr January 2015 (has links)
Alguns materiais, constituídos quase que exclusivamente por sílica, são empregados, de forma suplementar ao cimento Portland, por promoverem melhorias ao concreto, devido aos seus efeitos físicos e pozolânicos, além de atenderem a questões ambientais. No entanto, essa sílica pode gerar produtos indesejados na presença de álcalis, sendo este fenômeno conhecido como reação álcali sílica (RAS). Na presença de água, esses produtos são capazes de expandir no interior da massa de concreto, provocando fissuras internas e externas e, em casos mais graves, a degradação do elemento estrutural. Com a finalidade de evitar essa manifestação patológica, o presente trabalho propõe-se avaliar o potencial reativo frente à RAS da sílica ativa e dois tipos de cinzas da casca do arroz (CCA), uma comercial e outra residual. Nessa investigação foram adotados os teores de 5 a 50 %, utilizados como substituição parcial ao cimento Portland padrão. Os métodos de ensaio adotados nesta pesquisa foram o método acelerado em barras de argamassa segundo a NBR 15577 - 4/5, e dois novos métodos acelerados (cubos de pasta e prismas). O métodos acelerado em cubos de pasta avaliou a resistência à compressão, enquanto o método em prismas de pasta avaliou a variação dimensional. Os resultados obtidos em barras de argamassa apontaram que ambas as CCA investigadas, foram reativos frente à RAS. No entanto, o teor de 50 %, em ambas as CCA, se mostrou inócuo para essa reação. A sílica ativa foi considerada inócua em todos os teores avaliados. O aditivo superplastificante empregado não foi eficiente em reduzir a expansão provocada pela CCA. Os ensaios que avaliaram a expansão em prismas de pasta apresentaram uma ótima correlação positiva com o método normalizado em barras de argamassa. Nos prismas de pasta com 25 % de CCA industrial foram identificados os compostos franzinite, chessexite e thaumasite. Estes compostos apresentaram morfologia de acículas ora tortuosas ora delgadas e retilíneas compondo todas as amostras coletadas dessa pasta. A análise termogravimétrica apontou o alto poder adsorvente de água dessa pasta. Em conclusão, o ensaio em prismas de pastas a 48°C com 1,25 % de Na2Oeq demonstrou ser um método prático laboratorialmente e apresentou um grande potencial para avaliar os materiais suplementares ao cimento Portland frente a RAS, além de facilitar identificação dos produtos que provocaram expansão. / Some materials, consisting almost exclusively for silica, are employed, supplementary form to Portland cement, for promoting improvements to concrete, due to their physical and pozzolanic effects and environmental issues. However, this silica may generate unwanted products in presence of alkalis. This phenomenon is known as alkali-silica reaction (ASR). In the presence of water, these products are able to expand inside concrete, generating internal and external cracks and, in severe cases, structural element degradation. In order to prevent this pathologic manifestation, the aim of the present study was to evaluate reactive potential in ASR of fume silica and two types of rice husk ash (RHA), a manufacturing and residual. Levels of 5 to 50 % were used as partial replacement to standard Portland cement. In the present study, accelerated method in mortar bars according to NBR 15577 - 4/5 and two new accelerated methods (pastes cubes and prisms) were used. Accelerated method in paste cubes evaluated compressive strength, while method in paste prims evaluated dimensional change. Results in mortar bars demonstrated, both RHA, were reactive to ASR. However, level of 50 %, both RHA, was innocuous to ASR. Fume silica was innocuous to ASR at all levels evaluated. Superplasticizer additive was not effective to reduce to expansion caused by RHA. In the cubes assay was possible to evaluate the reactive potential to ASR by analysis of variation coefficient. Results demonstrated a positive correlation between expansion in paste prism and standard method in mortar bars. In the paste prism with 25 % of RHA manufacturing were identified compounds of franzinite, chessexite and thaumasite. These compounds presented morphology of needles sometimes tortuous and sometimes thin and straight in all samples. Thermogravimetric analysis showed the high adsorbent power of water in this paste. In conclusion, paste prims assay at 48ºC with Na2Oeq 1.25 % demonstrated to be a practical laboratory method and presented a great potential to evaluate additional material to Portland cement in front of ARS, and this assay facilitates the identifications of products that cause expansion.
39

Contribuição ao estudo do efeito da incorporação de cinza de casca de arroz em concretos submetidos à reação álcali-agregado / Contribution to the study of rice husk ash admixtures on concretes submitted to alkali-agreggate reactions

Silveira, Adriana Augustin January 2007 (has links)
A reação álcali-agregado no concreto é um fenômeno que tem como causa uma reação química que ocorre entre os hidróxidos alcalinos provenientes do cimento e alguns minerais reativos presentes no agregado. Esta reação pode causar a deterioração do concreto, pois os seus subprodutos podem tornar-se expansivos na presença de umidade, originando fissuração, diminuição da resistência, aumento da permeabilidade e, eventualmente, a ruptura da estrutura. O uso de adições minerais em concretos suscetíveis à reação álcali-agregado tem sido apontado como uma alternativa eficiente na prevenção da reação expansiva, juntamente com o uso de agregados não reativos e a limitação dos teores de álcalis no cimento ou concreto. Neste contexto, o presente trabalho teve como objetivo principal a investigação do processo de deterioração do concreto devido à reação álcali-sílica, principalmente no que se refere ao tipo ou mineralogia do agregado e à utilização de cinza de casca de arroz, como substituição parcial do cimento Portland. Desta forma, o programa de pesquisa compreendeu, a realização de ensaios de expansão acelerada em barras de argamassa (ASTM C1260/94) moldadas com cimento Portland tipo CP-I S 32, com teores de 12,5; 25 e 50% de dois tipos de cinza de casca de arroz, em substituição parcial ao cimento, e quatro diferentes tipos de agregados (basalto B, basalto BGO, granito e riodacito). A microestrutura dos materiais utilizados e das barras submetidas ao ensaio acelerado foi avaliada através de técnicas analíticas e experimentais, tais como, petrografia, difração de raios x, porosimetria por intrusão de mercúrio, microscopia eletrônica de varredura e de transmissão (MEV e MET), com microanálise por detecção de energia dispersiva (EDS). Os resultados obtidos no ensaio acelerado comprovaram a potencialidade reativa das rochas analisadas e identificaram uma correlação entre o tipo de rocha e o teor de cinza de casca de arroz. A análise da microestrutura indicou que existe uma reação química da CCA com o meio alcalino utilizado no ensaio que acaba interferindo na formação e na relação C/S dos produtos expansivos resultantes da reação álcali-sílica. / The alkali-aggregate reaction in concretes is a phenomenon caused by a chemical reaction that occurs between alkaline hydroxides from Portland cement and some reactive minerals from aggregates. Such reaction can cause severe concrete deterioration, as its by-products can become expansive in the presence of water, originating fissuration, strength reduction, permeability increase, and eventually, the failure of concrete structures. The use of mineral admixtures in concretes susceptible to the alkali-aggregate reaction has been pointed out as an efficient alternative to prevent concrete expansion, along with the use of non-reactive aggregates and the limitation of the alkali amount in cement or concrete composition. In this context, the main purpose of the present work was the investigation of concrete deterioration due to the alkali-silica reaction, focusing the aspects related to the type or mineralogy of the aggregate and the utilization of rice husk ash as partial substitution of Portland cement. The research program comprised initially accelerated expansion tests carried out in mortar bars (ASTM C 1260/94), which were molded using CP-I S 32 Portland cement, 12.5, 25, and 50% contents of two types of rice husk ash, as partial replacement to the cement, and four different types of rock aggregates (basalt B, Basalt BGO, granite, and rhyodacite). Also, the microstructure of the concrete mixtures investigated, after being submitted to expansion in the accelerated tests, were evaluated through experimental and analytical techniques such as petrography, mercury intrusion porosimetry, x-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), and energy dispersive detection (EDS). The results obtained have proved the reactivity potential of the investigated rock aggregates and identified a correlation between type of aggregate and rice husk ash content. The microstructure analysis indicated that the occurrence of a chemical reaction involving the rice husk ash in the alkaline environment established in the tests, had a significant effect on the amount of expansive by-products as C/S relation resulting from alkali-silica reactions.
40

Influência da incorporação de cinza da casca do arroz e sílica ativa no cimento Portland frente à reação álcali-sílica : desenvolvimento de uma nova proposta de método para avaliação da RAS em materiais suplementares ao cimento Portland

Trindade, Guilherme Hoehr January 2015 (has links)
Alguns materiais, constituídos quase que exclusivamente por sílica, são empregados, de forma suplementar ao cimento Portland, por promoverem melhorias ao concreto, devido aos seus efeitos físicos e pozolânicos, além de atenderem a questões ambientais. No entanto, essa sílica pode gerar produtos indesejados na presença de álcalis, sendo este fenômeno conhecido como reação álcali sílica (RAS). Na presença de água, esses produtos são capazes de expandir no interior da massa de concreto, provocando fissuras internas e externas e, em casos mais graves, a degradação do elemento estrutural. Com a finalidade de evitar essa manifestação patológica, o presente trabalho propõe-se avaliar o potencial reativo frente à RAS da sílica ativa e dois tipos de cinzas da casca do arroz (CCA), uma comercial e outra residual. Nessa investigação foram adotados os teores de 5 a 50 %, utilizados como substituição parcial ao cimento Portland padrão. Os métodos de ensaio adotados nesta pesquisa foram o método acelerado em barras de argamassa segundo a NBR 15577 - 4/5, e dois novos métodos acelerados (cubos de pasta e prismas). O métodos acelerado em cubos de pasta avaliou a resistência à compressão, enquanto o método em prismas de pasta avaliou a variação dimensional. Os resultados obtidos em barras de argamassa apontaram que ambas as CCA investigadas, foram reativos frente à RAS. No entanto, o teor de 50 %, em ambas as CCA, se mostrou inócuo para essa reação. A sílica ativa foi considerada inócua em todos os teores avaliados. O aditivo superplastificante empregado não foi eficiente em reduzir a expansão provocada pela CCA. Os ensaios que avaliaram a expansão em prismas de pasta apresentaram uma ótima correlação positiva com o método normalizado em barras de argamassa. Nos prismas de pasta com 25 % de CCA industrial foram identificados os compostos franzinite, chessexite e thaumasite. Estes compostos apresentaram morfologia de acículas ora tortuosas ora delgadas e retilíneas compondo todas as amostras coletadas dessa pasta. A análise termogravimétrica apontou o alto poder adsorvente de água dessa pasta. Em conclusão, o ensaio em prismas de pastas a 48°C com 1,25 % de Na2Oeq demonstrou ser um método prático laboratorialmente e apresentou um grande potencial para avaliar os materiais suplementares ao cimento Portland frente a RAS, além de facilitar identificação dos produtos que provocaram expansão. / Some materials, consisting almost exclusively for silica, are employed, supplementary form to Portland cement, for promoting improvements to concrete, due to their physical and pozzolanic effects and environmental issues. However, this silica may generate unwanted products in presence of alkalis. This phenomenon is known as alkali-silica reaction (ASR). In the presence of water, these products are able to expand inside concrete, generating internal and external cracks and, in severe cases, structural element degradation. In order to prevent this pathologic manifestation, the aim of the present study was to evaluate reactive potential in ASR of fume silica and two types of rice husk ash (RHA), a manufacturing and residual. Levels of 5 to 50 % were used as partial replacement to standard Portland cement. In the present study, accelerated method in mortar bars according to NBR 15577 - 4/5 and two new accelerated methods (pastes cubes and prisms) were used. Accelerated method in paste cubes evaluated compressive strength, while method in paste prims evaluated dimensional change. Results in mortar bars demonstrated, both RHA, were reactive to ASR. However, level of 50 %, both RHA, was innocuous to ASR. Fume silica was innocuous to ASR at all levels evaluated. Superplasticizer additive was not effective to reduce to expansion caused by RHA. In the cubes assay was possible to evaluate the reactive potential to ASR by analysis of variation coefficient. Results demonstrated a positive correlation between expansion in paste prism and standard method in mortar bars. In the paste prism with 25 % of RHA manufacturing were identified compounds of franzinite, chessexite and thaumasite. These compounds presented morphology of needles sometimes tortuous and sometimes thin and straight in all samples. Thermogravimetric analysis showed the high adsorbent power of water in this paste. In conclusion, paste prims assay at 48ºC with Na2Oeq 1.25 % demonstrated to be a practical laboratory method and presented a great potential to evaluate additional material to Portland cement in front of ARS, and this assay facilitates the identifications of products that cause expansion.

Page generated in 0.0995 seconds