Spelling suggestions: "subject:"alliages métalliques"" "subject:"alliages organométalliques""
1 |
Nouveaux matériaux riches en Mg pour le stockage d'hydrogène : composés Mg6Pd1-xMTx (MT = Ni, Ag, Cu) massifs et nanoconfinés et nanocomposites MgH2-TiH2Ponthieu, Marine, Ponthieu, Marine 29 November 2013 (has links) (PDF)
Cette thèse est consacrée à l'étude de composés riches en magnésium innovants destinés au stockage solide de l'hydrogène. Le but est de déstabiliser l'hydrure de Mg et d'accélérer sa cinétique de sorption par des effets d'alliage et de nano-structuration. La première famille de composés concerne les phases pseudo-binaires Mg6Pd1-xMTx (MT = Ni, Ag, Cu). Leurs propriétés structurales et les effets de substitution du Pd ont été étudiés par diffraction des rayons X, microscopie électronique à balayage et microsonde de Castaing. Les propriétés thermodynamiques et cinétiques d'hydrogénation de ces matériaux ont ensuite été déterminées par réaction solide-gaz. Différents mécanismes d'hydrogénation sont mis en jeu en fonction de l'élément de substitution. La nature des phases formées lors de la réaction d'hydrogénation modifie la stabilité des systèmes métal-hydrogène. Ainsi, la transformation de métal à hydrure est caractérisée par au moins deux plateaux de pression. Le premier plateau a lieu à une pression proche de celle de Mg/MgH2, alors que le second se produit à pression plus élevée. La détermination des valeurs d'enthalpie et d'entropie de réaction ont permis de quantifier la déstabilisation atteinte. Les meilleures cinétiques de désorption sont obtenues pour l'alliage au Ni, grâce à l'effet catalytique de la phase Mg2NiH4 formée lors de l'hydrogénation. La seconde approche vise à combiner les effets d'alliage et de nano-structuration. Des nanoparticules de Mg6Pd atteignant des tailles aussi petites que 3 nm sont confinées dans des matrices carbonées nano-poreuses. En comparant leurs propriétés d'hydrogénation à celles de l'alliage massif équivalent, on démontre non seulement que la cinétique de (dés)hydrogénation des nanoparticules est bien plus rapide, mais aussi que leur état hydrogéné est déstabilisé. Enfin, des nano-composites MgH2-TiH2 ont été synthétisés par broyage mécanique sous atmosphère réactive. L'ajout d'un catalyseur (TiH2) et la nano-structuration du Mg permettent de considérablement accélérer les cinétiques d'absorption et désorption d'hydrogène dans le Mg. Afin de comprendre le rôle de la phase TiH2 sur les propriétés cinétiques remarquables de ces nano-composites, leurs propriétés structurales ont été déterminées par diffraction des rayons X et des neutrons. L'existence d'une interface cohérente entre les phases Mg et TiH2 est d'importance majeure pour faciliter la mobilité de H au sein du nano-composite. De plus, il est démontré que les inclusions de TiH2 freinent la croissance de grain de Mg/MgH2, permettant ainsi de maintenir la nano-structuration des composés lors de leur cyclage
|
2 |
Nouveaux matériaux riches en Mg pour le stockage d’hydrogène : composés Mg6Pd1-xMTx (MT = Ni, Ag, Cu) massifs et nanoconfinés et nanocomposites MgH2-TiH2 / Novel Mg-rich materials for hydrogen storage : bulk and nanoconfined Mg6Pd1-xTMx (TM = Ni, Ag, Cu) compounds and MgH2-TiH2 nanocompositesPonthieu, Marine 29 November 2013 (has links)
Cette thèse est consacrée à l'étude de composés riches en magnésium innovants destinés au stockage solide de l'hydrogène. Le but est de déstabiliser l'hydrure de Mg et d'accélérer sa cinétique de sorption par des effets d'alliage et de nano-structuration. La première famille de composés concerne les phases pseudo-binaires Mg6Pd1-xMTx (MT = Ni, Ag, Cu). Leurs propriétés structurales et les effets de substitution du Pd ont été étudiés par diffraction des rayons X, microscopie électronique à balayage et microsonde de Castaing. Les propriétés thermodynamiques et cinétiques d'hydrogénation de ces matériaux ont ensuite été déterminées par réaction solide-gaz. Différents mécanismes d'hydrogénation sont mis en jeu en fonction de l'élément de substitution. La nature des phases formées lors de la réaction d'hydrogénation modifie la stabilité des systèmes métal-hydrogène. Ainsi, la transformation de métal à hydrure est caractérisée par au moins deux plateaux de pression. Le premier plateau a lieu à une pression proche de celle de Mg/MgH2, alors que le second se produit à pression plus élevée. La détermination des valeurs d'enthalpie et d'entropie de réaction ont permis de quantifier la déstabilisation atteinte. Les meilleures cinétiques de désorption sont obtenues pour l'alliage au Ni, grâce à l'effet catalytique de la phase Mg2NiH4 formée lors de l'hydrogénation. La seconde approche vise à combiner les effets d'alliage et de nano-structuration. Des nanoparticules de Mg6Pd atteignant des tailles aussi petites que 3 nm sont confinées dans des matrices carbonées nano-poreuses. En comparant leurs propriétés d'hydrogénation à celles de l'alliage massif équivalent, on démontre non seulement que la cinétique de (dés)hydrogénation des nanoparticules est bien plus rapide, mais aussi que leur état hydrogéné est déstabilisé. Enfin, des nano-composites MgH2-TiH2 ont été synthétisés par broyage mécanique sous atmosphère réactive. L'ajout d'un catalyseur (TiH2) et la nano-structuration du Mg permettent de considérablement accélérer les cinétiques d'absorption et désorption d'hydrogène dans le Mg. Afin de comprendre le rôle de la phase TiH2 sur les propriétés cinétiques remarquables de ces nano-composites, leurs propriétés structurales ont été déterminées par diffraction des rayons X et des neutrons. L'existence d'une interface cohérente entre les phases Mg et TiH2 est d'importance majeure pour faciliter la mobilité de H au sein du nano-composite. De plus, il est démontré que les inclusions de TiH2 freinent la croissance de grain de Mg/MgH2, permettant ainsi de maintenir la nano-structuration des composés lors de leur cyclage / This thesis is dedicated to the study of novel magnesium-rich compounds for solid state hydrogen storage. The aim is to destabilize Mg hydride and accelerate its sorption kinetics by alloying and nanostructuration. The first family of compounds concerns the Mg6Pd1-xTMx (TM = Ni, Ag, Cu) pseudo-binary phases. Their structural properties and the effects of Pd substitution have been studied by X-ray diffraction, scanning electron microscopy and electron microprobe analyses. Their thermodynamics and kinetics of hydrogenation have been determined by solid-gas reaction. Different hydrogenation mechanisms take place depending on the substituting element. The stability of the metal-hydrogen system is altered by the nature of the phases formed during hydrogenation reaction. Thus, metal to hydride transformation is characterized by at least two absorption plateau pressures. The pressure of the first plateau is similar to that of Mg/MgH2 while the second one occurs at higher pressure. The enthalpy and entropy of reaction are determined to quantify the destabilizing effect of Pd by TM substitution. Best desorption kinetics are found for the Ni containing alloy thanks to the catalytic effect of the Mg2NiH4 phase formed on hydrogenation. The second approach aims to combine alloying with nanostructuration effects. Nanoparticles of Mg6Pd as small as 3 nm are confined into nanoporous carbon matrix. By comparing their hydrogenation properties with those of the bulk alloy, we demonstrate that not only the (de)hydrogenation kinetics are much faster for the nanoparticles, but also that their hydrided state is destabilized. Finally, MgH2-TiH2 nanocomposites were synthesized by mechanical milling under reactive atmosphere. The addition of a catalyst (TiH2) and Mg nanostructuration allow strongly accelerating the sorption kinetics of hydrogen in Mg. To understand the role of the TiH2 phase on the outstanding kinetics of these nanocomposites, their structural properties have been determined by X-ray and neutron diffraction. The existence of a coherent interface between Mg and TiH2 phases is of major importance to facilitate H-mobility within the nanocomposite. Furthermore, it is shown that the TiH2 inclusions inhibit the Mg/MgH2 grain growth, thus maintaining the composites nanostructure during their cycling
|
3 |
Surface structures of In-Pd alloys and intermetallic compounds / Structure de surface d'alliages et de composés intermétalliques in-PdMcGuirk, Garry 15 December 2014 (has links)
Ce travail de thèse s’inscrit dans un programme de recherche européen qui vise à développer de façon rationnelle de nouveaux catalyseurs possédant une activité et une sélectivité élevées pour le vaporeformage du méthanol. L’impact socio-économique de cette réaction est considéré comme très important puisque le méthanol est un vecteur important d’hydrogène pour la production d’énergie dans les piles à combustible via la réaction CH3OH + H2O → CO2 + 3H2. L’objectif principal de la thèse consiste en la détermination des structures géométriques/cristallographiques et électroniques des surfaces d’alliages et de composés intermétalliques dans le système In-Pd, un des nouveaux systèmes prometteurs pour le développement d’une nouvelle génération de catalyseurs. Ces connaissances de base sont essentielles pour pouvoir ensuite appréhender la réactivité chimique de ces intermétalliques et leur spécificité en catalyse / This study is part of an European research program that aims to the rational development of new catalytic materials with high activity and selectivity towards the steam reforming of methanol. The socio-economic impact of this reaction is considered very important because methanol is a major vector for the production of hydrogen energy in fuel cells via the reaction CH3OH + H2O → CO2 + 3H2. The main goal of this thesis is the determination of the geometric/crystallographic and electronic structures of the surfaces of alloys and intermetallic compounds in the In-Pd system, a promising new system for the development of the next generation of catalysts. This basic knowledge is essential to understand the chemical reactivity of these intermetallics and their specificity in catalysis
|
Page generated in 0.114 seconds