• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 100
  • 33
  • 31
  • 16
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 393
  • 97
  • 29
  • 29
  • 28
  • 24
  • 23
  • 22
  • 22
  • 21
  • 20
  • 19
  • 19
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Combined Trajectory, Propulsion and Battery Mass Optimization for Solar-Regenerative High-Altitude Long-Endurance Aircraft

Gates, Nathaniel Spencer 09 April 2021 (has links)
This thesis presents the work of two significant projects. In the first project, a suite of benchmark problems for grid energy management are presented which demonstrate several issues characteristic to the dynamic optimization of these systems. These benchmark problems include load following, cogeneration, tri-generation, and energy storage, and each one assumes perfect foresight of the entire time horizon. The Gekko Python package for dynamic optimization is introduced and two different solution methods are discussed and applied to solving these benchmarks. The simultaneous solve mode out-performs the sequential solve mode in each benchmark problem across a wide range of time horizons with increasing resolution, demonstrating the ability of the simultaneous mode to handle many degrees of freedom across a range of problems of increasing difficulty. In the second project, combined optimization of propulsion system design, flight trajectory planning and battery mass optimization is applied to solar-regenerative high-altitude long-endurance (SR-HALE) aircraft through a sequential iterative approach. This combined optimization approach yields an increase of 20.2% in the end-of-day energy available on the winter solstice at 35°N latitude, resulting in an increase in flight time of 2.36 hours. The optimized flight path is obtained by using nonlinear model predictive control to solve flight and energy system dynamics over a 24 hour period with a 15 second time resolution. The optimization objective is to maximize the total energy in the system while flying a station-keeping mission, staying within a 3 km radius and above 60,000 ft. The propulsion system design optimization minimizes the total energy required to fly the optimal path. It uses a combination of blade element momentum theory, blade composite structures, empirical motor and motor controller mass data, as well as a first order motor performance model. The battery optimization seeks to optimally size the battery for a circular orbit. Fixed point iteration between these optimization frameworks yields a flight path and propulsion system that slightly decreases solar capture, but significantly decreases power expended. Fully coupling the trajectory and design optimizations with this level of accuracy is infeasible with current computing resources. These efforts show the benefits of combining design and trajectory optimization to enable the feasibility of SR-HALE flight.
292

Development and Testing of a Hydrogen Peroxide Injected Thrust Augmenting Nozzle for a Hybrid Rocket

Heiner, Mark C. 01 December 2019 (has links)
During a rocket launch, the point at which the most thrust is needed is at lift-off where the rocket is the heaviest since it is full of propellant. Unfortunately, this is also the point at which rocket engines perform the most poorly due to the relatively high atmospheric pressure at sea level. The Thrust Augmenting Nozzle (TAN) investigated in this paper provides a solution to this dilemma. By injecting extra propellant into the nozzle but downstream of the throat, the internal nozzle pressure is raised and the thrust is increased, and the nozzle efficiency, or specific impulse is potentially improved as well. Using this concept, the payload capacity of a launch vehicle can be increased and provides an excellent option for single stage to orbit vehicles.
293

The Effect of Whole-Body Vibration Preconditioning on High-Altitude-Induced Venous Gas Emboli / Prekonditioneringseffekter av helkroppsvibration på höghöjdsinducerade venösa gasembolier

Tuci, Tommaso January 2020 (has links)
Decompression sickness (DCS) is a risk associated with high-altitude aviation and diving. During these activities, decompression may lead to supersaturation of inert gas dissolved in bodily tissues and subsequently activate bubble formation in various bodily tissues, including in venous blood, known as venous gas emboli (VGE). It has been shown that the amount of VGE detected during and after decompression is linked to the risk of developing DCS. Thus, lowering the incidence of VGE would lower the risk of developing DCS. Previous studies have demonstrated that a session of whole-body vibration prior to a diving session is effective in lowering VGE formation. However, no study has investigated the effect of whole-body vibration on high-altitude-induced VGE. For the present study, 3 participants were recruited. The subjects performed on separate days (interspaced by 48 h) and in a randomised manner, three different preconditioning strategies: (A) 40-min seated rest, (B) 30-min seated rest followed by 150 knee squats performed over a 10 min period and (C) 30-min whole-body vibration (40 Hz) proceeded by a 10 min seated rest. Thereafter, subjects were exposed to an altitude of 24,000 ft continuously for 90 min, whilst laying in a supine position and breathing a normoxic gas mixture (PIO2 = 21 kPa). Heart rate (HR), cardiac output (CO) and stroke volume (SV) were monitored throughout the high-altitude exposure. Every 5 min, VGE prevalence was assessed ultrasonically and graded according to the Eftedal-Brubakk 5-point scale. In addition, every 15 min, subjects were asked to perform three fast, unloaded knee-bends while in their left-side horizontal recumbent position, with VGE prevalence being estimated both before and after the three knee-bends. The control strategy was associated with a higher VGE scores (2.7 ± 1.2) compared to vibration (1.0 ± 1.0) and squats (1.3 ± 0.6) strategies. VGE appeared earlier during the control strategy (35 ± 23 min) compared to the vibration (65 ± 31 min) and squats (50 ± 17 min) strategies. A strong negative correlation was only observed in the control strategy between VGE and CO (r = -0.63) and SV (r = -0.64). This study demonstrated that whole-body vibration is the most effective preconditioning strategy in lowering the amount of high-altitude-induced VGE compared with 40-min of seated-rest and 150 knee squats performed over a period of 10 min. / Att drabbas av dekompressionssjuka (DKS) utgör en risk vid såväl höghöjdsflygning som dykning. I samband med dessa aktiviteter, kan dekompression leda till övermättnad av inert-gas löst i kroppens vävnader, vilket i sin tur kan leda till bubbelformation i olika vävnader, inklusive i venblodet, där bubblorna benämns venösa gasembolier (VGE). Det har visats föreligga ett samband mellan mängden VGE som uppmäts under och efter dekompression och risken att utveckla DKS. Således kan det antas att en minskad incidens av VGE är förknippad med minskad risk att utveckla DKS. Tidigare undersökningar har påvisat att en period med helkroppsvibration före dykning påtagligt minskar bildningen av VGE. Hittills har man dock inte undersökt om helkroppsvibration påverkar höghöjdsinducerade VGE. I föreliggande undersökning, medverkade tre försökspersoner. De exponerades vid separata tillfällen (med 48 timmars mellanrum), och i olika ordningsföljd, för tre prekonditioneringsstrategier: (A) 40 min sittande vila, (B) 30 min sittande vila följt av 150 djupa knäböjningar som genomfördes under en 10-minutersperiod och (C) 10 min sittande vila följt av 30 min helkroppsvibration (40 Hz). Därefter exponerades försökspersonerna för en simulerad höjd motsvarande 24,000 fot ö.h. kontinuerligt under 90 min, under det att de i liggande ryggläge andades en normoxisk gasblandning (inspiratoriskt syrepartialtryck = 21 kPa). Hjärtfrekvens (HF), hjärtminutvolym (HMV) och hjärtats slagvolym (SV) mättes kontinuerligt under höghöjdsexponeringen. Var femte min bedömdes prevalensen av VGE med hjälp av ultraljudsteknik och en 5-gradig skattningsskala. Var femtonde min genomförde försökspersonerna 3 obelastade knäböjningar, liggande i vänster sidoläge, varvid VGE-prevalensen bedömdes såväl före som efter knäböjningarna. Kontrollbetingelsen (A) framkallade högre VGE-nivå (2,7 ± 1,2) än vibrationsbetingelsen (B; 1 ± 1) och knäböjbetingelsen (C; 1,3 ± 0,6). VGE uppträdde tidigare under kontrollbetingelsen (35 ± 23 min) än i vibrations- (65 ± 31 min) och knäböj-betingelserna (50 ± 17 min). Starka negativa samband påvisades mellan VGE och CO (r = -0,63) respektive SV (r = -0,64). Således visade föreliggande undersökning att helkroppsvibration.
294

The Extent of Reliability for Vehicle-to-Vehicle Communication in Safety Critical Applications: An Experimental Study

Hoque, Mohammad A., Rios-Torres, Jackeline, Arvin, Ramin, Khattak, Asad, Ahmed, Salman 03 May 2020 (has links)
Vehicle-to-vehicle (V2V) communication using Dedicated Short Range Communications (DSRC) technology promises to help drastically reduce vehicle collisions. DSRC allows vehicles in a highly mobile and complex network to send and receive safety messages with more reliability and lower latency compared with other wireless technologies used for automotive communications. However, there are many factors that could cause a safety-critical automotive application to become unreliable due to communication failures. While the reliability of V2V communication has been a subject of study by several researchers, there are still open questions regarding how the placement of the DSRC devices (inside or outside the host vehicle), the vehicle’s interior elements and the differences in altitude can affect the V2V communications. This article provides experimental testing data and analyses in order to quantify the impacts of relative vehicle speeds, altitude differences between vehicles, and interior obstacles on V2V communication range and reliability for opposite traffic, in both city and highway environments. We discuss how these results can adversely affect the design parameters of safety critical applications by considering the V2V application “Safe Pass Advisory” on two-lane rural highways.
295

Effects of Intermittent Hypoxic Training on Athletic Performance

Teckman, Sarah K. 13 May 2014 (has links)
No description available.
296

Development and Assessment of Altitude Adjustable Convergent Divergent Nozzles Using Passive Flow Control

Mandour Eldeeb, Mohamed F. January 2014 (has links)
No description available.
297

Active Regulation of Speed During a Simulated Low-altitude Flight Task: Altitude Matters!

Bennett, April M. 27 December 2006 (has links)
No description available.
298

Diesel Engine Experimental Design and Advanced Analysis Techniques

Davis, Jonathan Michael 20 October 2011 (has links)
No description available.
299

Localization of Combat Aircraft at High Altitude using Visual Odometry

Nilsson Boij, Jenny January 2022 (has links)
Most of the navigation systems used in today’s aircraft rely on Global Navigation Satellite Systems (GNSS). However, GNSS is not fully reliable. For example, it can be jammed by attacks on the space or ground segments of the system or denied at inaccessible areas. Hence to ensure successful navigation it is of great importance to continuously be able to establish the aircraft’s location without having to rely on external reference systems. Localization is one of many sub-problems in navigation and will be the focus of this thesis. This brings us to the field of visual odometry (VO), which involves determining position and orientation with the help of images from one or more camera sensors. But to date, most VO systems have primarily been established on ground vehicles and low flying multi-rotor systems. This thesis seeks to extend VO to new applications by exploring it in a fairly new context; a fixed-wing piloted combat aircraft, for vision-only pose estimation in applications of extremely large scene depth. A major part of this research work is the data gathering, where the data is collected using the flight simulator X-Plane 11. Three different flight routes are flown; a straight line, a curve and a loop, for two types of visual conditions; in clear weather with daylight and during sunset. The method used in this work is ORB-SLAM3, an open-source library for visual simultaneous localization and mapping (SLAM). It has shown excellent results in previous works and has become a benchmark method often used in the field of visual pose estimation. ORB-SLAM3 tracks the straight line of 78 km very well at an altitude over 2700 m. The absolute trajectory error (ATE) is 0.072% of the total distance traveled in daylight and 0.11% during sunset. These results are of the same magnitude as ORB-SLAM3 on the EuRoC MAV dataset. For the curved trajectory of 79 km ATE is 2.0% and 1.2% of total distance traveled in daylight and sunset respectively.  The longest flight route of 258 km shows the challenges of visual pose estimation. Although it is managing to close loops in daylight, it has an ATE of 3.6% during daylight. During sunset the features do not possess enough invariant characteristics to close loops, resulting in an even larger ATE of 14% of total distance traveled. Hence to be able to use and properly rely on vision in localization, more sensor information is needed. But since all aircraft already possess an inertial measurement unit (IMU), the future work naturally includes IMU data in the system. Nevertheless, the results from this research show that vision is useful, even at the high altitudes and speeds used by a combat aircraft.
300

Power Density Optimization of SiC-based DC/AC Converter for High-Speed Electric Machine in More/All-electric Aircraft

Zhao, Xingchen 07 May 2024 (has links)
The increasing shift towards more electric or all electric aircraft urgently necessitates dc/ac converter systems with high power density. Silicon Carbide (SiC) devices, known for their superior performance over traditional silicon-based devices, facilitate this increase in power density. Nonetheless, achieving optimal power density faces challenges due to the unique requirements and conditions of aircraft applications. A primary obstacle is optimizing the topology and parameters of the dc/ac converter system to achieve high power density while adhering to the stringent aerospace EMI standard DO-160 and bearing current limitations. Electric aircraft demand unmatched reliability, necessitating strict control over EMI noise and bearing currents. These considerations significantly impact the selection of topology and parameters to maximize power density. This dissertation assesses how dc voltage, topology, and switching frequency affect component weight, seeking an optimal mix to enhance power density. The methodology and conclusions are validated through a 200-kW motor drive system designed for electric aircraft. Moreover, traditional dc/ac systems are burdened by the weight and space occupied by separate current sensors and short-circuit protection circuits. This work introduces two innovative current sensors that integrate device current sampling with the functionality of traditional shunt resistors, AC hall sensors, and short-circuit protection circuits, thus improving system density and bandwidth. The first sensor, a PCB-based Rogowski coil, integrates with the gate driver and commutation loops, enhancing power density despite challenges in managing CM noise. The second sensor utilizes parasitic inductance in the power loop, with an integrator circuit and an adaptive compensation algorithm correcting errors from parasitic resistance, ensuring high bandwidth accuracy without needing parasitic resistance information. Variable operation conditions from motors pose another challenge, potentially leading to oversized inverters due to uneven loss distribution among switching devices, exacerbated at extreme operating points like motor start-up. This dissertation investigates the loss distribution in multi-level T-Type neutral point clamped (NPC) topology and proposes a novel loss-balance modulation scheme. This scheme ensures even loss distribution across switches, independent of power factor and modulation index, and is applicable to T-type inverters of any level count. Finally, thermal management and insulation at high altitudes present significant challenges. While power devices may be cooled using conventional liquid cooling solutions, components like AC and EMI filters struggle with complex geometries that can create hot spots or high E-field points, complicating filter design for high current applications. A comprehensive design and optimization methodology based on planar heavy-copper PCB design is proposed. By utilizing flexible 2D or 3D E-field shaping and maximizing thermal transfer from copper to ambient, this methodology significantly improves power density and ensures effective heat dissipation and insulation at altitudes up to 50,000 feet. / Doctor of Philosophy / The increasing shift towards more electric or all electric aircraft urgently necessitates dc/ac converter systems with high power density. Silicon Carbide (SiC) devices, known for their superior performance over traditional silicon-based devices, facilitate this increase in power density. Nonetheless, achieving optimal power density faces challenges due to the unique requirements and conditions of aircraft applications. A primary obstacle is optimizing the topology and parameters of the dc/ac converter system to achieve high power density while adhering to the stringent aerospace EMI standard DO-160 and bearing current limitations. Electric aircraft demand unmatched reliability, necessitating strict control over EMI noise and bearing currents. These considerations significantly impact the selection of topology and parameters to maximize power density. This dissertation assesses how dc voltage, topology, and switching frequency affect component weight, seeking an optimal mix to enhance power density. The methodology and conclusions are validated through a 200-kW motor drive system designed for electric aircraft. Moreover, traditional dc/ac systems are burdened by the weight and space occupied by separate current sensors and short-circuit protection circuits. This work introduces two innovative current sensors that integrate device current sampling with the functionality of traditional shunt resistors, AC hall sensors, and short-circuit protection circuits, thus improving system density and bandwidth. The first sensor, a PCB-based Rogowski coil, integrates with the gate driver and commutation loops, enhancing power density despite challenges in managing CM noise. The second sensor utilizes parasitic inductance in the power loop, with an integrator circuit and an adaptive compensation algorithm correcting errors from parasitic resistance, ensuring high bandwidth accuracy without needing parasitic resistance information. Variable operation conditions from motors pose another challenge, potentially leading to oversized inverters due to uneven loss distribution among switching devices, exacerbated at extreme operating points like motor start-up. This dissertation investigates the loss distribution in multi-level T-Type neutral point clamped (NPC) topology and proposes a novel loss-balance modulation scheme. This scheme ensures even loss distribution across switches, independent of power factor and modulation index, and is applicable to T-type inverters of any level count. Finally, thermal management and insulation at high altitudes present significant challenges. While power devices may be cooled using conventional liquid cooling solutions, components like AC and EMI filters struggle with complex geometries that can create hot spots or high E-field points, complicating filter design for high current applications. A comprehensive design and optimization methodology based on planar heavy-copper PCB design is proposed. By utilizing flexible 2D or 3D E-field shaping and maximizing thermal transfer from copper to ambient, this methodology significantly improves power density and ensures effective heat dissipation and insulation at altitudes up to 50,000 feet.

Page generated in 0.0869 seconds