• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 446
  • 405
  • 168
  • 121
  • 102
  • 77
  • 53
  • 50
  • 10
  • 6
  • 6
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 1955
  • 331
  • 215
  • 189
  • 163
  • 161
  • 158
  • 145
  • 144
  • 142
  • 132
  • 125
  • 119
  • 116
  • 106
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
551

Microstructure and mechanical properties of ductile die-cast Al-Mg-Si-Mn alloys

Watson, Douglas January 2015 (has links)
Aluminium alloys have been seen a dramatic increase in transport manufacturing in past two decades. This is primarily driven by the achievement of effective weight-savings, increased vehicle fuel efficiency and reduced CO2 emissions in transport. One of the significant progresses in most recent years has been in the application of aluminium-intensive car body structure, in which the manufacturing of thin wall castings with improved ductility is one of the critical issues. High pressure die casting (HPDC) is a fast and economical near-net shape manufacturing method to produce thin wall components. Therefore the application of HPDC process to make thin wall structural components for aluminium-intensive car body structure is one of the most challenges in recent development. However, the currently available die cast aluminium alloys are unable to fulfil this requirement because of the insufficient ductility, which is essential for joining castings with sheets and extruded parts. This has become critical in further development and extensive acceptance in car manufacturing industry. Generally, the mechanical properties of die castings are determined by alloy composition, defect levels and microstructure in the castings. In the present study, the significant achievement is the development of Al-Mg-Si-Mn alloy for HPDC process to provide improved ductility in die castings in order to satisfy the requirement of mechanical properties, in particular ductility for the application in automotive body structure. Starting from the thermodynamic analysis and CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) modelling of Al-Mg-Si system for solidification and phase formation, the alloy composition was optimised using international standard tensile samples to review the effect of various alloying elements on the mechanical properties. Another achievement is the understanding of the solidification and microstructural evolution, the relationship between the microstructure and mechanical properties, and the strengthening mechanisms in the developed alloy. The solidification behaviour in the shot sleeve and in the die cavity was examined for the formation of the primary α-Al phase, eutectic Al-Mg2Si phases in the alloy. The morphology, size and size distribution of the primary α-Al phase were characterised under different solidification conditions. The growth morphology of the primary α-Al phase formed in the shot sleeve and in the die cavity was analysed using the Mullins-Sekerka instability theory and the growth rate of eutectic Al-Mg2Si phases during solidification was calculated using Jackson-Hunt theory. Still another achievement is the study of the effect of Mn and Fe on the morphology, size and distribution of various Fe-rich compounds in the Al-Mg-Si alloy produced by HPDC process. The assessment was associated with the mechanical properties of yield strength, ultimate tensile strength and elongation with different Fe and Mn contents. CALPHAD modelling of multi-component Al-Mg-Si-Mn-Fe and Al-Mg-Si-Fe systems was studied to find out the effect of Fe impurity in the Al-Mg-Si alloy. The precise accumulation of iron during HPDC using fully recycled materials was examined to predict the maximum cycles to produce castings with required mechanical properties. The strengthening mechanism and the relationship between the microstructure and mechanical properties are explored in the alloy made by secondary materials. Furthermore, the effect of nickel on the microstructure and mechanical properties of the die-cast Al-Mg-Si-Mn alloy was also studied in association with the formation of Ni-rich intermetallics during solidification in the die-cast Al-Mg-Si-Mn alloy containing different Ni contents. The final achievement is the understanding of the repeatability of die castings made by the new alloy with industrial scale components. The tensile properties of standard samples that were obtained directly from HPDC process and made by the machined die castings at different locations were further assessed for the reproducibility of casting components made by the Al-Mg-Si-Mn alloy. The distributions of yield strength, ultimate tensile strength and elongation of the tensile samples were analysed by the average values with standard deviations and by the Weibull statistical model with three parameters. The correlations between the mechanical properties and the microstructural features, porosity levels and fracture morphology were investigated for the different types of samples. It was found that three-parameter Weibull analysis was capable of analysing the reproducibility of die cast components and the scattering of tensile properties was mainly due to the presence of porosity and non-uniform microstructure in the die-castings.
552

Vers une prise en compte du vieillissement thermique dans la filière de dimensionnement des structures pour la fatigue thermomécanique / Consideration of high temperature in-service aging into the thermo-mechanical fatigue structure sizing of cast Aluminum alloys engine parts

Hoche, François-Xavier 27 January 2016 (has links)
Les culasses de moteur diesel PSA sont réalisées en alliages d'aluminium de fonderie durcis par précipitation. La culasse atteint une température stable lors de l'utilisation du véhicule mais la succession de démarrages et d'arrêts engendre un phénomène de fatigue thermique au niveau du pontet inter-soupapes. L'exposition à des températures élevées modifie la microstructure de précipitation provoquant une diminution des propriétés mécaniques et donc un vieillissement de l'alliage. Il est donc nécessaire de prendre en compte le vieillissement thermique dans le dimensionnement. Pour y parvenir, nous avons d'abord analysé la microstructure de précipitation (nature des phases précipitées, morphologie et taille) en Microscopie Electronique en Transmission (MET) et le comportement cyclique viscoplastique pour différents vieillissement isothermes. Des essais thermomécaniques anisothermes, simulant le chargement en service, ont été réalisés afin d'analyser les relations entre la déformation plastique et la précipitation. Les paramètres géométriques de la précipitation ont été déterminés en MET pour différents nombres de cales thermomécaniques et ont été comparés à ceux de la précipitation résultant de l'exposition de l'alliage au seul cycle thermique pendant le même nombre de cycles.La microdureté étant un bon indicateur du vieillissement des alliages d'aluminium durcis par précipitation, des modèles d'évolution de microdureté ont été développés afin de simuler sa décroissance dans la structure lors d'un essai représentatif des conditions en service. Ces simulations permettent d'améliorer l'estimation du vieillissement de ces alliages lors de l'utilisation de la culasse. / Cylinder heads of automotive engines are produced by casting of precipitation strengthened Al-Si alloys.The cylinder head quickly reaches a steady state temperature but the succession of starts and stops generates thermomechanical fatigue in the area between the valve seats. At service temperature, the precipitation microstructures evolve from their state after precipitation hardening heat treatment to an aged state, which results in the reduction of their mechanical properties. The increase of thermomechanical stresses in new engines requires taking thermal aging into account for sizing. To that end, the precipitation microstructures (precipitates crystal structures, composition, morphology, and distribution) have been analyzed by Transmission Electron Microscopy (TEM) for various aging conditions and the corresponding cyclic least-viscoplastic behavior has been determined. The effect of plastic deformation on the kinetics of precipitate growth has been studied throughout loadings representative of engine operation. The morphological characteristics of the precipitation microstructure resulting from the thermomechanical aging were determined by TEM for different numbers of cycles and compared with those resulting from the mere thermal aging in order to assess the effect of plastic deformation on the kinetics of precipitate growth. As micro hardness is a good indicator of the aging of precipitation strengthened aluminium alloys, micro hardness evolution models have been developed to calculate its decrease in the cylinder head during a test simulating in service conditions. The simulations give us a better understanding of the in-service aging of these alloys.
553

Intégration des alliages d'aluminium dans le câblage électrique automobile : procédés de mise en forme, microstructure et durabilité / Integration of aluminum alloys in automotive electrical wiring : process forming, microstructure and durability

Laurino, Adrien 19 July 2012 (has links)
Cette thèse s'inscrit dans un programme de développement technologique de la Société LEONI. Ce programme de recherche a pour principal objectif de disposer, à l'issue des trois années de l'étude, d'un panel de connaissances scientifiques le plus pertinent possible sur la durabilité des alliages d'aluminium dans des environnements caractéristiques d'un faisceau électrique automobile. Il s'agit, à terme, d'intégrer, à l'échelle industrielle, l'aluminium ou l'un de ses alliages dans les câblages électriques automobiles. Après une première étape de sélection des matériaux, l'alliage retenu est un alliage d'aluminium 6101. La fabrication des faisceaux électriques automobiles nécessite l'utilisation de brins de petits diamètres qui sont obtenus, à partir d'une ébauche, par un procédé de mise en forme associant plusieurs étapes de tréfilage et de revenu. Chacune de ces étapes conditionne les propriétés de l'alliage. Les travaux réalisés dans le cadre de cette thèse ont eu pour objectif d'analyser et de quantifier l'influence des différentes étapes de ce procédé de mise en forme sur la durabilité de l'alliage 6101. Compte tenu de l'environnement en service des faisceaux électriques, deux types de sollicitation ont été considérés ; ces sollicitations sont associées à un endommagement en corrosion d'une part et à un endommagement en fatigue-corrosion d'autre part. La première partie de ces travaux est donc consacrée à une étude du comportement en corrosion en milieu contenant des ions chlorures de l'alliage d'aluminium AA 6101 à l'état métallurgique T4, correspondant à l'état microstructural du matériau d'ébauche. L'influence des traitements thermomécaniques liés au procédé de mise en forme des fils fins sur la microstructure, les propriétés mécaniques et le comportement en corrosion de l'alliage AA 6101 fait l'objet de la seconde partie des travaux. Enfin, l'influence de contraintes mécaniques cycliques sur le comportement en corrosion de l'alliage AA 6101 en milieu NaCl 0,5M a été étudiée. L'ensemble de ces résultats met en évidence un couplage environnementmicrostructure-état de contraintes avec un fort impact des traitements thermo-mécaniques sur les microstructures et donc sur les propriétés mécaniques et le comportement en corrosion du matériau / This work is in the framework of a technological development program with LEONI. The aim of this program research is to bring technical skills and scientific knowledge, the most pertinent as possible on the durability of aluminum alloys in automotive harness environment. The purpose is to integrate aluminum alloys in automotive wiring systems. After a first step of materials selection, the AA 6101 aluminum alloy has been selected. Automotive wiring harnesses need small diameters of strands which are obtained by a forming process combining several cold-drawing steps and aging heat treatments. Each step of this forming process influences the alloy properties. The aim of this work is to analyze and quantify the influence of each step of the forming process on the durability of AA 6101 aluminum alloy. Considering the automotive harness environment, two kinds of damages have been studied: corrosion damage in one hand and fatigue-corrosion damages in the other hand. The first part of this work was dedicated to the study of the corrosion behavior of AA 6101 aluminum alloy at T4 metallurgical state in chloride media. The influence of thermo-mechanical treatments, due to the process forming of the strands on the microstructure, the mechanical properties and the corrosion behavior of the AA 6101 has been studied in the second part. Finally, the influence of cyclic mechanical stresses on the corrosion behavior, i.e. fatigue-corrosion phenomena, of the AA 6101 in 0.5M NaCl has been considered. The whole results highlight a coupling between environment-microstructure-stress states with a severe influence of the thermo-mechanical treatments on the microstructures, the mechanical properties and on the corrosion behavior
554

Study on Development of Aluminium Based Metal Matrix Composites Using Friction Stir Processing

Dixit, Saurabh January 2015 (has links) (PDF)
Composite materials are multifunctional materials having unique mechanical and physical properties that can be tailored to meet the requirements of a particular application. Aluminium based Metal Matrix Composites (MMC) always draw the attention of researchers due to its unique characteristics such as better strength to weight ratio, low wear rate and lower thermal expansion coefficient. There are various methods for manufacturing of MMC that can be grouped into two major categories: (a) Solid sate method such as powder metallurgy, co-extrusion and (b) Liquid state method such as stir casting. All of these methods for production of composites have their own advantages and disadvantages. Porosity, and poor wettabilty of dispersoids with matrix are few common problems in solid state route. Formations of undesirable phases, and segregation of dispersoids are common problems in liquid state processing route. Friction Stir Processing (FSP) technique, a derivative technique of Friction Stir Welding (FSW) has emerged as a major solid state technique to produce composites. However, there are several challenges associated with it. Most of the past work has been on limited volume of material. Researchers have tried to combine FSP technique with powder metallurgy technique to overcome aforementioned challenges associated with these techniques. Where on one hand, powder metallurgy ensures the uniform dispersion of dispersoids in the matrix, on the other hand FSP on sintered billet removes the pores and other defects. The combination of these two techniques leads to a more controlled and uniform properties. However, at the same time, it can be noted that the combination of these processes is tedious and time consuming. In this study, an attempt is made to achieve bulk dispersion of a second phase into an aluminium matrix using FSP technique. A 5 mm thickness composite is attempted in this work. To achieve this objective proper and uniform mixing of the particles is required. To achieve this, new tools and processing steps are to be designed and analyzed for a better understanding of material flow around the tool pin and the effect of different tool pin geometries on the material flow. Keeping this objective, a detailed study is carried out on material flow during FSW process using aluminium as base metal. A marker material technique is employed to understand the material flow. A strip of copper is selected as the marker material. Material flow can be qualitatively predicted during the process by observing the distribution of marker material in the weld nugget. Three different kinds of tools, each with an additional feature are designed for this purpose (a) Plain frustum shape pin (b) threaded frustum shape pin and, (c) Triflute pin . The material flow due to the plain pin tool can be considered as primary flow during the FSP. Three different kinds of flow zones are observed in the weld nugget in the case of plain tool. It is found that higher numbers of geometrical features (threads and flutes) not only enhance the material flow but also lead to the additional flow currents and more thorough and uniform mixing. A closer study of the weld nugget revealed that the copper marker particles and the matrix were diffusion bonded. Based on the reaction time available and temperature in the weld nugget a diffusion layer thickness of 4 nm is expected between copper and aluminium. However, the diffusion layer thickness was found to be 3.5 μm, which is nearly three orders of magnitude higher. This can be attributed to the enhancement of diffusion due to simultaneous application of strain and temperature. As copper is soluble in the aluminium, an insoluble marker material tin was used for study of flow in the weld nugget. However, the effect of insolubility and lower melting point had some unexpected effect on the processing loads. The normal load during steady state tool traverse in conventional butt-welding is found to be around 2.7 KN while it attains an average value of 14.7 KN when a thin strip of tin is sandwiched between these plates. However, a drop in the torque of around 13.12 NM is observed when tin was sandwiched between the plates as compared to the case when no insert was present. On closer examination of the flow behavior, it is seen that the tin melted, squeezed out and formed a lubricious layer between the tool and the work piece. This reduced the torque significantly and a concomitant drop in temperature was observed. The interaction between the tool and the colder aluminium work piece would thus result in much larger normal and transverse load Based on the expected and unexpected results of flow pattern in the weld nugget, a new FSP tool and processing steps were developed to manufacture MMC. Tungsten, which is the highest melting point metal is chosen as the dispersing phase. Further, as tungsten has high melting point, the kinetics of intermetallics formation would be low for the given FSP processing time at the processing temperature. This would lead to tungsten acting as a more ductile strengthening particle, which is expected to should give some unique characteristics to the MMC. Tungsten powder with an average diameter of 414 nm was dispersed in aluminum matrix with three different proportions after optimizing all the process parameters. It is noted that the mechanical properties are significantly influenced as the tungsten content in the matrix increases. In practice, MMC shows relatively low ductility compared to the parent metal. However in this case the composite exhibited even better ductility than the as received aluminium plates (rolled sheets). The composite showed around 129 MPa of yield strength along with 21% ductility when tungsten content is 3.8 at.%. It is also found that the reaction between aluminum and tungsten occurs during the processing and form the Al12W intermetallic phase. Though the formation of this intermetallic phase was unlikely due to the low temperature and short time available during the process, the reaction kinetics between aluminium and tungsten would have been enhanced due to the simultaneous application of strain and temperature. Given that the metal-metal, tungsten-aluminium composite produced by FSP had unique properties and also formed intermetallics, a study on incorporation of a highly insoluble material, graphite was carried out. Further graphite with its own unique properties and very low wettability with aluminium could possibly impart completely different properties to the system. Past work on graphite aluminium composites produced by other methods did not show promise. As FSP imposes high strains at relatively high flow stresses on the processed material, it was seen that the graphite got sheared to form multi-layer graphene composites with the aluminium. The graphene sheets are formed by mechanical exfoliation of graphite particles during its incorporation in the matrix. The formation of graphene was confirmed after separating the graphite from the processed zone and TEM studies of the composite. It is seen that most of the graphite got converted into multilayer graphene. This aluminium-graphene composite exhibited enhanced ductility and UTS. As received aluminium plates exhibited only 11% ductility and around 100 MPa of UTS while this composite exhibited around 26 % ductility and 147 MPa of UTS. However, there is only a slight improvement in yield strength of this composite.
555

Etude de la ténacité d'une soudure en undermatch : Application à la tenue mécanique de la jonction soudée FE en Al 6061-T6 / Toughness Study of an Undermatched Welded Joint : Application to the Mechanical Integrity of the Electron Beam Welded Joint of 6016-T6 Aluminium Alloy

Rekik, Wissal 17 November 2016 (has links)
Dans le cadre de la démonstration de l’intégrité des composants nucléaires les plus sensibles, une analyse de la présence d’un défaut potentiel de type fissure peut être requise par la sureté nucléaire. Ceci est particulièrement le cas en présence de jonctions soudées. Pour assurer un conservatisme de cette analyse, la position du défaut postulé doit être la plus pénalisante possible. Les analyses réalisées pour des démonstrations similaires sur des structures en acier reposent sur une approche de type mono matériau utilisant le comportement du métal de base. Cette approche est la plus pénalisante dans le cas d’une soudure en overmatch mais doit être remise en cause dans le cas d’une soudure en undermatch. Dans ce cadre, cette thèse propose une méthodologie expérimentale et numérique permettant l’identification de la configuration la plus pénalisante vis-à-vis de la mécanique de la rupture d’une soudure en undermatch. L’application de cette méthode a été réalisée sur une soudure en faisceau d’électrons en Al6061-T6. Un gradient de propriétés mécaniques le long de la jonction soudée a été dans un premier temps identifié permettant la conduite d’une analyse fine basée sur une approche multimatériau. Dans un second temps, le comportement en ténacité de la jonction soudée a été étudié sur éprouvettes CT. La transférabilité du paramètre J à l’amorçage à une autre géométrie d’éprouvette a été démontrée ce qui constitue une base importante pour l’hypothèse de transférabilité vers des structures. Pour finir, une étude numérique sur un tube de grandes dimensions avec un défaut semi-elliptique a été développée en prenant en compte les contraintes résiduelles de soudage. Les résultats montrent que la zone affectée thermiquement à 13 mm du centre de la soudure considérée est la plus sensible en mécanique de la rupture, ceci remet par conséquent en question les méthodes traditionnelles menées dans des analyses à la rupture brutale qui consistent à considérer un défaut dans la zone fondue. / For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of undermatched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an undermatched welded joint. The methodology proposed is applied to an electron beam welded joint on Al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multimaterial approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone.
556

Nanometre-thick alumina coatings deposited by ALD on metals : a comparative electrochemical and surface analysis study of corrosion properties / Couches d'alumine épaisses de nanomètre déposées par ALD sur métaux : une étude d'analyse électrochimique et superficielle comparative de propriétés de corrosion

Mirhashemihaghighi, Shadi 17 July 2015 (has links)
La protection contre la corrosion par des films ultramince (≤50 nm) d'alumine déposées par ALD sur le cuivre et l'aluminium à 250°C a été étudiée dans une solution aqueuse 0,5 M de NaCl en combinant méthodes d'analyse électrochimique et de surface. L'étude de l'alumine ALD sur un substrat Cu comprend l'effet de l'épaisseur du revêtement, l'effet de l'oxyde interfacial, l'effet de la préparation de la surface et la durabilité du revêtement. Pour le substrat Al, le travail a porté sur l'examen de l'effet de l'épaisseur du revêtement. Les revêtements ont montré d'excellentes propriétés de corrosion sur des substrats Cu électropoli, tandis qu'ils ont échoué à protéger le substrat recuit, de fait d'une mauvaise adhérence à une surface lissée. L'amélioration de la résistance à la corrosion d'alumine ALD sur le substrat Cu est obtenue en l'absence de vieillissement de l'oxyde natif interfacial, et sa modification par un prétraitement. En dépit de remarquables propriétés d'étanchéité sur un substrat Cu électropoli, la protection contre la corrosion de l'alumine ALD n'est pas durable. Le revêtement du substrat Al avec l'alumine ALD conduit à l'augmentation significative de la résistance à la corrosion. Le potentiel de piqûration est augmenté en présence des revêtements l'épaisseur de 20 et 50 nm, ce qui n'a pas été obtenus avec 10 nm en raison de sa faible épaisseur. Cette étude est une étude préliminaire pour l'application de revêtements d'alumine ALD pour la protection contre la corrosion des alliages Al-Cu en combinaison avec d'autres compositions ALD. / Corrosion protection by ultrathin (≤ 50 nm) alumina films deposited by atomic layer deposition (ALD) on copper and aluminium at 250°C was studied in 0.5 M NaCl aqueous solution by combining electrochemical and surface analytical methods. The study of ALD Al2O3 on Cu substrate included investigation of the effect of the coating thickness, the effect of an interfacial oxide, the effect of surface preparation and the durability of the coating. For ALD Al2O3 on Al substrate, the work focused on the examination of the effect of the deposited coating thickness. ALD alumina coatings showed excellent corrosion properties on electropolished copper substrates, while they failed to protect the annealed substrate, as a result of poor adhesion to a smoothened surface. Modification of interfacial native copper oxide by its pre-treatment led to better corrosion protection of ALD alumina on copper substrate. Despite its remarkable sealing properties on electropolished Cu substrate, corrosion protection of ALD alumina was not durable. Coating of Al substrate with ALD Al2O3 led to significant increase of polarization resistance. Better performance was obtained for 10 and 20 nm coatings on Al than on Cu. Apart from significant decrease of current, the pitting potential was increased in presence of 20 and 50 nm coatings, which was not achieved with 10 nm due to its low thickness. This study was a preliminary study for application of ALD alumina coatings for corrosion protection of Al-Cu alloys in combination with other ALD compositions.
557

The hydrolysis of aluminium, a mass spectrometric study

Sarpola, A. (Arja) 18 September 2007 (has links)
Abstract This thesis is focused on the hydrolysis of aluminium, the polymerisation of the hydrolysis products, and how these can be monitored by mass spectrometric methods. The main aim of this research is to figure out how the aqueous speciation of aluminium changes as a function of pH (3.2–10), concentration (1–100 mM), reaction time (1s–14d), and counter anion (Cl-, SO42-, HCOO-). The method used was electrospray mass spectrometry. The results showed more variable speciation than those suggested earlier. The main species were Al2, Al3, and Al13, which were found in all of the conditions under scrutiny. The effect of pH was the most remarkable of all the parameters researched. The formation of large highly charged complexes was strongly dependent on it. Also the Al-concentration in the bulk solution had a clear effect on speciation: in dilute solutions there were more protonated ligands and less attached counter anions. This could mean that the species in more diluted bulk solutions had fewer different states of charge. Reaction time caused only minor changes to speciation in the initial pH: there was slightly more variation of a certain sized species in the aged solution. In elevated pH, the birth of important Al13 oligomers was time dependent. The effect of the counter anion was tremendous. In a chloride environment the speciation was rich and diversified. With sulphate the speciation was limited to solid- like compounds, and the variation of single-sized species was almost lacking. The formate as a counter anion caused most surprising results; the charge of aluminium in some studied complexes was lowered from the common 3+ to 1+. If this reaction also occurs in natural circumstances, the uses of aluminium formate would be wide. The results can be utilised in following the progress of dissolution, the mobilization and toxicity of aluminium in natural waters, as well as in water purification, and in reaching minimal chemical contamination levels in sludge as well as in aqueous waste.
558

Korrelationen zwischen Herstellungsprozess, Struktur und Eigenschaften von anodischen Aluminiumoxidschichten für Verschleißschutzanwendungen / Correlations between production process, structure and properties of anodic aluminium oxide coatings for wear protection applications

Meyer, Daniel 30 August 2017 (has links) (PDF)
Das Ziel dieser Dissertation besteht darin, einen Beitrag zur technologischen, ökonomischen und ökologischen Weiterentwicklung der anodischen Verfahren zur Oberflächenkeramisierung von Aluminium zu leisten. Die Arbeit ist in zwei thematische Schwerpunkte untergliedert. Im ersten Teil wird für die Hartanodisation eine hinsichtlich eines geringeren Energieeinsatzes optimierte Elektrolytzusammensetzung identifiziert und mit einem optimierten galvanostatischen Pulsmuster simultan appliziert. Im Ergebnis kann die Gesamtleistungsaufnahme um ca. 6 % reduziert werden, ohne die mechanischen Eigenschaften der Oxidschichten zu mindern. Im zweiten Schwerpunkt werden das Lichtbogen- und das Flammspritzen mit der plasmaelektrolytischen anodischen Oxidation kombiniert, um verschleißbeständige Aluminiumoxidschichten auf Stahl-, Titan- und Magnesiumsubstraten zu applizieren. Neben einer umfangreichen Mikrostrukturanalyse (REM, EDX, XRD, EBSD) werden die mechanischen Eigenschaften der Schichten untersucht und mit atmosphärisch plasmagespritzten Al2O3-Schichten verglichen. Insbesondere Oxidschichten auf lichtbogengespritztem AlCu4Mg1 zeigen dabei eine hohe Härte sowie eine sehr gute Verschleißbeständigkeit. / The aim of the present work is to contribute to the technological, economic and ecological improvement of the anodic processes for the surface ceramization of aluminum. The work is subdivided into two thematic priorities. In the first part, for the hard anodizing process an optimized electrolyte composition for a lower energy input is identified and applied simultaneously with an optimized galvanostatic pulse regime. As a result, the total power consumption can be reduced by approximately 6% without reducing the mechanical properties of the oxide coatings. In the second focus, arc and flame spraying are combined with plasma electrolytic anodic oxidation to apply wear resistant aluminum oxide coatings on steel, titanium and magnesium substrates. In addition to a comprehensive microstructural analysis (SEM, EDX, XRD, EBSD), the mechanical properties of the layers are investigated and compared with atmospheric plasma sprayed Al2O3 coatings. In particular, oxide layers formed on arc sprayed AlCu4Mg1 coatings show a high hardness as well as very good wear resistance.
559

Chromium-free conversion coating of aluminium-copper alloys

George, Faith Olajumoke January 2011 (has links)
Aluminium alloys are frequently pre-treated by a conversion coating before application of an organic coating in order to improve the corrosion resistance and adhesive properties of the surface and the corrosion resistance provided by the system. Chromate-containing conversion coatings are commonly used for this purpose. However, legislation limits future use of hexavalent chromium compounds due to their toxic and carcinogenic nature. Therefore, alternative, so-called chromium-free conversion coatings are being developed that are more environmentally-compliant.The purpose of the present work has therefore been to contribute to a better understanding of how the aluminium substrate affects the formation and properties of conversion coatings for adhesive bonding. In particular, a chrome-free zirconium-based conversion treatment process has been investigated as a possible replacement for conventional chromate conversion treatment. The influence of the conversion time on the thickness of the formed layer on pure aluminium was investigated using complementary surface analytical techniques. The conversion time was varied between 30 and 600 seconds.In this study, the structure and composition of zirconium-based chromium-free conversion coatings on magnetron sputtered superpure aluminium and a range of aluminium-copper alloys were characterised as a function of immersion time in the aqueous conversion bath to understand the mechanism of coating formation and protection. However, the presence of copper significantly influences the coating development and ultimately the performance of the conversion coatings formed on binary copper-containing aluminium alloys.The morphology and composition of the coatings have been probed using transmission electron microscopy, Rutherford backscattering spectroscopy and glow discharge optical emission spectroscopy, with loss of substrate through growth of the conversion coating also quantified. A comparison of the RBS spectra obtained for the superpure aluminium specimens after different immersion times revealed that zirconium (Zr) and oxygen (O) peaks were wider for longer immersion times, indicating thickening of the coating with increased immersion times. Thus, increasing the immersion time resulted in an increase in coating thickness but little change in coating composition occurred as determined by the RBS RUMP simulations. Alloying decreases the coating thickness, as well as metal consumption. Here, aspects of the corrosion behaviour of superpure aluminium and aluminium-copper alloys were also considered using electronoptical, electrochemical and surface analytical probing. The influence that short and prolonged treatment times exert on the performances of such conversion coating is discussed. The conversion coating formed after 60 s and 180 s of immersion in the zirconium-based conversion coating bath provide good corrosion resistance which can be attributed to the high stability of the compounds that constitute the surface oxide layer, and good adhesion properties.
560

Bioavailability and toxicity of aluminium to the freshwater crayfish, Pacifastacus leniusculus

Woodburn, Katie January 2012 (has links)
Aluminium is the third most abundant element in the lithosphere and yet no biological function has been elucidated. The ubiquity and pH-dependent chemical speciation of aluminium provides multiple routes of exposure to organisms, inducing neurotoxicity, tissue necrosis and organelle dysfunction. However, many studies of aluminium toxicity lack consideration of the speciation and relevant concentration of aluminium and the route of exposure. The aim of this thesis was to examine the accumulation, distribution, excretion and toxicity of aluminium following a common route of exposure (ingestion) at a concentration likely to be encountered by the model organism (freshwater crayfish, Pacifastacus leniusculus) in the wild. Crayfish are sediment dwelling omnivorous crustaceans distributed worldwide and as such are vulnerable to multiple routes of aluminium exposure. They play a central role in aquatic food webs and are becoming increasingly popular for human consumption, raising concern about food chain transfer. Crayfish were fed aluminium chloride-spiked artificial food pellets for either 20 days, 28 days + 10 day aluminium-free clearance period, or 22 weeks + 4 week aluminium-free clearance period. In addition, systemic administration of aluminium citrate was undertaken to draw comparisons with previous mammalian work and compare the two routes of exposure. Tissue distribution and accumulation was measured in the gills, hepatopancreas, flexor muscle and antennal gland. Stress and tissue damage were analysed using biochemical and histopathological techniques. Behavioural toxicity tests and measurements of the neurophysiological parameters of the crayfish medial giant neuron were used to assess aluminium-induced neurotoxicity. In vitro neurotoxicity tests with aluminium chloride were also carried out on isolated nerve tissue to assess the suitability of in vitro studies. The key site of aluminium accumulation following ingestion was the hepatopancreas. Excretion was observed via the gills, antennal glands (in the urine) and hepatopancreas (for incorporation into the faeces). However, physiological consequences such as tissue damage, inflammation and altered neuronal activity were observed and persisted even after cessation of aluminium ingestion. Consequently there are implication for crayfish fitness and survival, the aquatic food web and human toxicity following ingestion of aluminium.

Page generated in 0.0442 seconds