• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 18
  • 17
  • 16
  • 15
  • 13
  • 13
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Optical properties of ALN and deep UV photonic structures studied by photoluminescence

Sedhain, Ashok January 1900 (has links)
Doctor of Philosophy / Department of Physics / Jingyu Lin / Time-resolved deep ultraviolet (DUV) Photoluminescence (PL) spectroscopy system has been employed to systematically monitor crystalline quality, identify the defects and impurities, and investigate the light emission mechanism in III-nitride semiconducting materials and photonic structures. A time correlated single photon counting system and streak camera with corresponding time resolutions of 20 and 2 ps, respectively, were utilized to study the carrier excitation and recombination dynamics. A closed cycle He-flow cryogenic system was employed for temperature dependent measurements. This system is able to handle sample temperatures in a wide range (from 10 to 900 K). Structural, electrical, and morphological properties of the material were monitored by x-ray diffraction (XRD), Hall-effect measurement, and atomic force microscopy (AFM), respectively. Most of the samples studied here were synthesized in our laboratory by metal organic chemical vapor deposition (MOCVD). Some samples were bulk AlN synthesized by our collaborators, which were also employed as substrates for homoepilayer growth. High quality AlN epilayers with (0002) XRD linewidth as narrow as 50 arcsec and screw type dislocation density as low as 5x10[superscript]6 cm[superscript]-2 were grown on sapphire substrates. Free exciton transitions related to all valence bands (A, B, and C) were observed in AlN directly by PL, which allowed the evaluation of crystal field (Δ[subscript]CF) and spin-orbit (Δ[subscript]SO) splitting parameters exerimentally. Large negative Δ[subscript]CF and, consequently, the difficulties of light extraction from AlN and Al-rich AlGaN based emitters due to their unique optical polarization properties have been further confirmed with these new experimental data. Due to the ionic nature of III-nitrides, exciton-LO phonon Frohlich interaction is strong in these materials, which is manifested by the appearance of phonon replicas accompanying the excitonic emission lines in their PL spectra. The strength of the exciton-phonon interactions in AlN has been investigated by measuring the Huang-Rhys factor. It compares the intensity of the zero phonon (exciton emission) line relative to its phonon replica. AlN bulk single crystals, being promising native substrate for growing nitride based high quality device structures with much lower dislocation densities (<10[superscript]4 cm[superscript]-2), are also expected to be transparent in visible to UV region. However, available bulk AlN crystals always appear with an undesirable yellow or dark color. The mechanism of such undesired coloration has been investigated. MOCVD was utilized to deposit ~0.5 μm thick AlN layer on top of bulk crystal. The band gap of strain free AlN homoepilayers was 6.100 eV, which is ~30 meV lower compared to hetero-epitaxial layers on sapphire possessing compressive strain. Impurity incorporation was much lower in non-polar m-plane growth mode and the detected PL signal at 10 K was about an order of magnitude higher from a-plane homo-epilayers compared to that from polar c-plane epilayers. The feasibility of using Be as an alternate p-type dopant in AlN has been studied. Preliminary studies indicate that the Be acceptor level in AlN is ~330 meV, which is about 200 meV shallower than the Mg level in AlN. Understanding the optical and electronic properties of native point defects is the key to achieving good quality material and improving overall device performance. A more complete picture of optical transitions in AlN and GaN has been reported, which supplements the understanding of impurity transitions in AlGaN alloys described in previous reports.
52

Wide Bandgap Semiconductors Based Energy-Efficient Optoelectronics and Power Electronics

January 2019 (has links)
abstract: Wide bandgap (WBG) semiconductors GaN (3.4 eV), Ga2O3 (4.8 eV) and AlN (6.2 eV), have gained considerable interests for energy-efficient optoelectronic and electronic applications in solid-state lighting, photovoltaics, power conversion, and so on. They can offer unique device performance compared with traditional semiconductors such as Si. Efficient GaN based light-emitting diodes (LEDs) have increasingly displaced incandescent and fluorescent bulbs as the new major light sources for lighting and display. In addition, due to their large bandgap and high critical electrical field, WBG semiconductors are also ideal candidates for efficient power conversion. In this dissertation, two types of devices are demonstrated: optoelectronic and electronic devices. Commercial polar c-plane LEDs suffer from reduced efficiency with increasing current densities, knowns as “efficiency droop”, while nonpolar/semipolar LEDs exhibit a very low efficiency droop. A modified ABC model with weak phase space filling effects is proposed to explain the low droop performance, providing insights for designing droop-free LEDs. The other emerging optoelectronics is nonpolar/semipolar III-nitride intersubband transition (ISBT) based photodetectors in terahertz and far infrared regime due to the large optical phonon energy and band offset, and the potential of room-temperature operation. ISBT properties are systematically studied for devices with different structures parameters. In terms of electronic devices, vertical GaN p-n diodes and Schottky barrier diodes (SBDs) with high breakdown voltages are homoepitaxially grown on GaN bulk substrates with much reduced defect densities and improved device performance. The advantages of the vertical structure over the lateral structure are multifold: smaller chip area, larger current, less sensitivity to surface states, better scalability, and smaller current dispersion. Three methods are proposed to boost the device performances: thick buffer layer design, hydrogen-plasma based edge termination technique, and multiple drift layer design. In addition, newly emerged Ga2O3 and AlN power electronics may outperform GaN devices. Because of the highly anisotropic crystal structure of Ga2O3, anisotropic electrical properties have been observed in Ga2O3 electronics. The first 1-kV-class AlN SBDs are demonstrated on cost-effective sapphire substrates. Several future topics are also proposed including selective-area doping in GaN power devices, vertical AlN power devices, and (Al,Ga,In)2O3 materials and devices. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019
53

Advanced Thin Film Electroacoustic Devices / Avancerade Elektroakustiska Tunnfilmskomponenter

Bjurström, Johan January 2007 (has links)
The explosive development of the telecom industry and in particular wireless and mobile communications in recent years has lead to a rapid development of new component and fabrication technologies to continually satisfy the mutually exclusive requirements for better performance and miniaturization on the one hand and low cost on the other. A fundamental element in radio communications is time and frequency control, which in turn is achieved by high performance electro-acoustic components made on piezoelectric single crystalline substrates. The latter, however, reach their practical limits in terms of performance and cost as the frequency of operation reaches the microwave range. Thus, the thin film electro-acoustic technology, which uses thin piezoelectric films instead, has been recently developed to alleviate these deficiencies. This thesis explores and addresses a number of issues related to thin film synthesis on the one hand as well as component design and fabrication on other. Specifically, the growth of highly c-axis textured AlN thin films has been studied and optimized for achieving high device performance. Perhaps, one of the biggest achievements of the work is the development of a unique process for the deposition of AlN films with a mean c-axis tilt, which is of vital importance for the fabrication of resonators operating in contact with liquids, i.e. biochemical sensors. This opens the way for the development of a whole range of sensors and bio-analytical tools. Further, high frequency Lamb wave resonators have been designed, fabricated and evaluated. Performance enhancement of FBAR devices is also addressed, e.g. spurious mode suppression, temperature compensation, etc. It has been demonstrated, that even without temperature compensation, shear mode resonators operating in a liquid still exhibit an excellent performance in terms of Q (200) and coupling (~1.8%) at 1.2 GHz, resulting in a mass resolution better than 2 ng cm-2 in water, which excels that of today’s quartz sensors.
54

Investigation of Novel Metal Gate and High-κ Dielectric Materials for CMOS Technologies

Westlinder, Jörgen January 2004 (has links)
The demands for faster, smaller, and less expensive electronic equipments are basically the driving forces for improving the speed and increasing the packing density of microelectronic components. Down-scaling of the devices is the principal method to realize these requests. For future CMOS devices, new materials are required in the transistor structure to enable further scaling and improve the transistor performance. This thesis focuses on novel metal gate and high-κ dielectric materials for future CMOS technologies. Specifically, TiN and ZrN gate electrode materials were studied with respect to work function and thermal stability. High work function, suitable for pMOS transistors, was extracted from both C-V and I-V measurements for PVD and ALD TiN in TiN/SiO2/Si MOS capacitor structures. ZrNx/SiO2/Si MOS capacitors exhibited n-type work function when the low-resistivity ZrNx was deposited at low nitrogen gas flow. Further, variable work function by 0.6 eV was achieved by reactive sputter depositing TiNx or ZrNx at various nitrogen gas flow. Both metal-nitride systems demonstrate a shift in work function after RTP annealing, which is discussed in terms of Fermi level pinning due to extrinsic interface states. Still, the materials are promising in a gate last process as well as show potential as complementary gate electrodes. The dielectric constant of as-deposited (Ta2O5)1-x(TiO2)x thin films is around 22, whereas that of AlN is about 10. The latter is not dependent on the degree of crystallinity or on the measurement frequency up to 10 GHz. Both dielectrics exhibit characteristics appropriate for integrated capacitors. Finally, utilization of novel materials were demonstrated in strained SiGe surface-channel pMOSFETs with an ALD TiN/Al2O3 gate stack. The transistors were characterized with standard I-V, charge pumping, and low-frequency noise measurements. Correlation between the mobility and the oxide charge was found. Improved transistor performance was achieved by conducting low-temperature water vapor annealing, which reduced the negative charge in the Al2O3.
55

Study of III-nitride growth kinetics by molecular-beam epitaxy

Moseley, Michael William 02 April 2013 (has links)
Since the initial breakthroughs in structural quality and p-type conductivity in GaN during the late 1980s, the group-III nitride material system has attracted an enormous amount of interest because of its properties and applications in both electronics and optoelectronics. Although blue light-emitting diodes have been commercialized based on this success, much less progress has been made in ultraviolet emitters, green emitters, and photovoltaics. This lack of development has been attributed to insufficient structural and electrical material quality, which is directly linked to the growth of the material. The objective of this work is to expand the understanding of III-nitride growth towards the improvement of current device capabilities and the facilitation of novel device designs. Group-III nitride thin films are grown by molecular-beam epitaxy in a pulsed, metal-rich environment. The growths of nitride binaries and ternaries are observed in situ by transient reflection high-energy electron diffraction (RHEED) intensities, which respond to the behavior of atoms on the growing surface. By analyzing and interpreting these RHEED signatures, a comprehensive understanding of nitride thin film growth is obtained. The growth kinetics of unintentionally doped GaN by metal-rich MBE are elucidated, and a novel method of in situ growth rate measurement is discovered. This technique is expanded to InN, highlighting the similarity in molecular-beam epitaxy growth kinetics between III-nitride binaries. The growth of Mg-doped GaN is then explored to increase Mg incorporation and electrical activation. The growth of InxGa1-xN alloys are investigated with the goal of eliminating phase separation, which enables single-phase material for use in photovoltaics. Finally, the growth of unintentionally doped and Mg-doped AlGaN is investigated towards higher efficiency light emitting diodes. These advancements in the understanding of III-nitride growth will address several critical problems and enable devices relying on consistent growth in production, single-phase material, and practical hole concentrations in materials with high carrier activation energies.
56

Visible and infrared emission from Er₂O₃ nanoparticles, and Ho⁺³, Tm⁺³, and Sm⁺³ doped in AlN for optical and biomedical applications

Wilkinson, Lynda L. 21 July 2012 (has links)
Rare-earth ions holmium (Ho+3), Thulium (Tm+3), and Samarium (Sm+3) were investigated for infrared emission and their possible biomedical applications by a photoluminescence (PL) system. Holmium’s (Ho+3) emission peaks were the result of transitions 5 S2 → 5 I7, and 5 S2 → 5 I5 respectively. Samarium’s (Sm+3) emission peaks were 936 nm and 1863 nm. Thulium’s (Tm+3) emission peaks were the a result of transitions 3 H4 → 3 H6, 3 H5 → 3 H6 , and 3 F4 → 3 H6 respectively. Erbium Oxide nanoparticles (Er2O3) mixed with water by a photoluminescence (PL) system. Erbium Oxide’ (Er2O3) nanoparticle’s emission peaks were the a result of transitions 4 I15/2 → 4 S3/2 , 4 I15/2 → 4 I13/2 respectively. The process was also repeated in vacuum and it was found that the green emission enhances tremendously when the nanoparticles are excited in vacuum. This enhanced luminescence from the Erbium Oxide nanoparticles shows their potential importance in the optical devices and Biomedical applications. / Department of Physics and Astronomy
57

Design and Finite Element Modeling of a MEMS‐scale Aluminum Nitride (AlN) EnergyHarvester with Meander Spring Feature

Zula, Daniel Peter 28 August 2019 (has links)
No description available.
58

Modification of Inert Gas Condensation Technique to Achieve Wide Area Distribution of Nanoparticles and Synthesis and Characterization of Nanoparticles for Semiconductor Applications

Pandya, Sneha G. 22 July 2016 (has links)
No description available.
59

Étude de la cinétique et des dommages de gravure par plasma de couches minces de nitrure d’aluminium

Morel, Sabrina 08 1900 (has links)
Une étape cruciale dans la fabrication des MEMS de haute fréquence est la gravure par plasma de la couche mince d’AlN de structure colonnaire agissant comme matériau piézoélectrique. Réalisé en collaboration étroite avec les chercheurs de Teledyne Dalsa, ce mémoire de maîtrise vise à mieux comprendre les mécanismes physico-chimiques gouvernant la cinétique ainsi que la formation de dommages lors de la gravure de l’AlN dans des plasmas Ar/Cl2/BCl3. Dans un premier temps, nous avons effectué une étude de l’influence des conditions opératoires d’un plasma à couplage inductif sur la densité des principales espèces actives de la gravure, à savoir, les ions positifs et les atomes de Cl. Ces mesures ont ensuite été corrélées aux caractéristiques de gravure, en particulier la vitesse de gravure, la rugosité de surface et les propriétés chimiques de la couche mince. Dans les plasmas Ar/Cl2, nos travaux ont notamment mis en évidence l’effet inhibiteur de l’AlO, un composé formé au cours de la croissance de l’AlN par pulvérisation magnétron réactive et non issu des interactions plasmas-parois ou encore de l’incorporation d’humidité dans la structure colonnaire de l’AlN. En présence de faibles traces de BCl3 dans le plasma Ar/Cl2, nous avons observé une amélioration significative du rendement de gravure de l’AlN dû à la formation de composés volatils BOCl. Par ailleurs, selon nos travaux, il y aurait deux niveaux de rugosité post-gravure : une plus faible rugosité produite par la présence d’AlO dans les plasmas Ar/Cl2 et indépendante de la vitesse de gravure ainsi qu’une plus importante rugosité due à la désorption préférentielle de l’Al dans les plasmas Ar/Cl2/BCl3 et augmentant linéairement avec la vitesse de gravure. / A crucial step in the fabrication of high-frequency MEMS is the etching of the columnar AlN thin film acting as the piezoelectric material. Realized in close collaboration with researchers from Teledyne Dalsa, the objective of this master thesis is to better understand the physico-chemical mechanisms driving the etching kinetics and damage formation dynamics during etching of AlN in Ar/Cl2/BCl3 plasmas. In the first set of experiments, we have studied the influence of the operating parameters of an inductively coupled plasma on the number density of the main etching species in such plasmas, namely positive ions and Cl atoms. These measurements were then correlated with the etching characteristics, in particular the etching rate, the surface roughness, and the chemical properties of the AlN layer after etching. In Ar/Cl2 plasmas, our work has highlighted the inhibition effect of AlO, a compound formed during the AlN growth by reactive magnetron sputtering and not from plasma-wall interactions or from the incorporation of moisture in the columnar nanostructure of AlN. In presence of small amounts of BCl3 in the Ar/Cl2 plasma, we have observed a significant increase of the etching yield of AlN due to the formation of volatile BOCl compounds. Furthermore, our work has demonstrated that there are two levels of roughness following etching: a lower roughness produced by the presence of AlO in Ar/Cl2 plasmas which is independent of the etching rate and a larger roughness due to preferential desorption of Al in Ar/Cl2/BCl3 plasmas which increases linearly with the etching rate.
60

Composite C/C à matrice nanochargée en alumine et en nitrure d'aluminium / C/C composites with alumina and aluminium nitride nanocharged matrix

Martin, Nicolas 21 November 2014 (has links)
Un procédé de synthèse de dépôts nanostructurés de céramiques à bases d’aluminium au sein de composites carbone/carbone (C/C) est développé. Il consiste à synthétiser à partir de précurseurs dissout en solution aqueuse des nano-particules de morphologies variées. La maîtrise du procédé se déroule en deux étapes. Dans un premier temps une étude sur substrat plan permet de saisir les points clés du procédé, puis l’adaptation de la synthèse au sein d’un échantillon massif permet le changement d’échelle à des échantillons fibreux. Quatre gammes d’éprouvettes de matériaux densifiés sont ainsi élaborées. La caractérisation des matériaux permet de prouver la bonne cohésion de ceux-ci et de mesurer plusieurs propriétés mécaniques et structurales.En complément plusieurs interfaces carbone|alumine ou nitrure d’aluminium sont simulées par une approche de dynamique moléculaire ab initio. La méthode choisie pour générer les modèles consiste à simuler la trempe d’un carbone amorphe à haute température sur une surface céramique immobile, puis de relaxer les contraintes.Des disparités sur l’organisation structurale des nano-structures et en particulier sur l’orientation des plans de graphène générés vis-à-vis de la surface sont observées en fonction des modèles. Lorsque les plans sont plutôt perpendiculaires à la surface, l’interface est constituée de nombreuses liaisons fortes et le comportement en simulation de traction est bon, tandis que des plans parallèles entrainent une interface et un comportement faible.Enfin, la caractérisation HRTEM de certains matériaux élaborés permet d’identifier expérimentalement des interfaces semblables à celles obtenus par les modèles. / A hydrothermal-like process to introduce nano-structured alumina and aluminum nitride in carbon/carbon (C/C) composites is developped. Starting from dissolved reactants in an aqueous media,nanoparticules with various morphology are synthesised. The understanding and control of the processis completed in two steps. In the former the study on simplewafer type substrat allows to identifythe key parameters of the process. During the latter a scaling up of the process is done to allow thesynthesis in situ of C/C composites. The microstructural and some mechanical characterization ofthe four ranges of material produced is achieved.In addition several carbon|alumina and carbon|aluminumnitride are simulated using an ab initiomolecular dynamic approach. The methdology to generate the models consists in sumulating theliquid quench of a high temperature amorphous carbon inbetween fixed ceramic surface, then torelease the constrains. Depending on the system, different organisations of the nano-carbons withinthe surfaces are identified : when the graphene sheets are pependicular to the surface, the modelshows an important number of strong bonds and the simulation traction behavior is good, whereaswhen they are parallel to the surface it leads to weak interface and mechanical behavior.Finally HRMET charasterization of some of the materials produced allows to identify experimentalinterfaces alike to those obtained during themolecular dynamic simulations.

Page generated in 0.0558 seconds