• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 8
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 78
  • 78
  • 18
  • 17
  • 16
  • 15
  • 13
  • 13
  • 11
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Synthesis of Thin Piezoelectric AlN Films in View of Sensors and Telecom Applications

Moreira, Milena De Albuquerque January 2014 (has links)
The requirements of the consumer market on high frequency devices have been more and more demanding over the last decades. Thus, a continuing enhancement of the devices’ performance is required in order to meet these demands. In a macro view, changing the design of the device can result in an improvement of its performance. In a micro view, the physical properties of the device materials have a strong influence on its final performance. In the case of high frequency devices based on piezoelectric materials, a natural way to improve their performance is through the improvement of the properties of the piezoelectric layer. The piezoelectric material studied in this work is AlN, which is an outstanding material among other piezoelectric materials due to its unique combination of material properties. This thesis presents results from experimental studies on the synthesis of AlN thin films in view of telecom, microelectronic and sensor applications. The main objective of the thesis is to custom design the functional properties of AlN to best suit these for the specific application in mind. This is achieved through careful control of the crystallographic structure and texture as well as film composition. The piezoelectric properties of AlN films were enhanced by doping with Sc. Films with different Sc concentrations were fabricated and analyzed, and the coupling coefficient (kt2) was enhanced a factor of two by adding 15% of Sc to the AlN films. The enhancement of kt2 is of interest since it can contribute to a more relaxed design of high frequency devices. Further, in order to obtain better deposition control of c-axis tilted AlN films, a new experimental setup were proposed. When this novel setup was used, films with well-defined thicknesses and tilt uniformity were achieved. Films with such characteristics are very favorable to use in sensors based on electroacoustic devices operating in viscous media. Studies were also performed in order to obtain c-axis oriented AlN films deposited directly on Si substrates at reduced temperatures. The deposition technique used was HiPIMS, and the results indicated significant improvements in the film texture when comparing to the conventional Pulsed DC deposition process.
62

Étude de la cinétique et des dommages de gravure par plasma de couches minces de nitrure d’aluminium

Morel, Sabrina 08 1900 (has links)
Une étape cruciale dans la fabrication des MEMS de haute fréquence est la gravure par plasma de la couche mince d’AlN de structure colonnaire agissant comme matériau piézoélectrique. Réalisé en collaboration étroite avec les chercheurs de Teledyne Dalsa, ce mémoire de maîtrise vise à mieux comprendre les mécanismes physico-chimiques gouvernant la cinétique ainsi que la formation de dommages lors de la gravure de l’AlN dans des plasmas Ar/Cl2/BCl3. Dans un premier temps, nous avons effectué une étude de l’influence des conditions opératoires d’un plasma à couplage inductif sur la densité des principales espèces actives de la gravure, à savoir, les ions positifs et les atomes de Cl. Ces mesures ont ensuite été corrélées aux caractéristiques de gravure, en particulier la vitesse de gravure, la rugosité de surface et les propriétés chimiques de la couche mince. Dans les plasmas Ar/Cl2, nos travaux ont notamment mis en évidence l’effet inhibiteur de l’AlO, un composé formé au cours de la croissance de l’AlN par pulvérisation magnétron réactive et non issu des interactions plasmas-parois ou encore de l’incorporation d’humidité dans la structure colonnaire de l’AlN. En présence de faibles traces de BCl3 dans le plasma Ar/Cl2, nous avons observé une amélioration significative du rendement de gravure de l’AlN dû à la formation de composés volatils BOCl. Par ailleurs, selon nos travaux, il y aurait deux niveaux de rugosité post-gravure : une plus faible rugosité produite par la présence d’AlO dans les plasmas Ar/Cl2 et indépendante de la vitesse de gravure ainsi qu’une plus importante rugosité due à la désorption préférentielle de l’Al dans les plasmas Ar/Cl2/BCl3 et augmentant linéairement avec la vitesse de gravure. / A crucial step in the fabrication of high-frequency MEMS is the etching of the columnar AlN thin film acting as the piezoelectric material. Realized in close collaboration with researchers from Teledyne Dalsa, the objective of this master thesis is to better understand the physico-chemical mechanisms driving the etching kinetics and damage formation dynamics during etching of AlN in Ar/Cl2/BCl3 plasmas. In the first set of experiments, we have studied the influence of the operating parameters of an inductively coupled plasma on the number density of the main etching species in such plasmas, namely positive ions and Cl atoms. These measurements were then correlated with the etching characteristics, in particular the etching rate, the surface roughness, and the chemical properties of the AlN layer after etching. In Ar/Cl2 plasmas, our work has highlighted the inhibition effect of AlO, a compound formed during the AlN growth by reactive magnetron sputtering and not from plasma-wall interactions or from the incorporation of moisture in the columnar nanostructure of AlN. In presence of small amounts of BCl3 in the Ar/Cl2 plasma, we have observed a significant increase of the etching yield of AlN due to the formation of volatile BOCl compounds. Furthermore, our work has demonstrated that there are two levels of roughness following etching: a lower roughness produced by the presence of AlO in Ar/Cl2 plasmas which is independent of the etching rate and a larger roughness due to preferential desorption of Al in Ar/Cl2/BCl3 plasmas which increases linearly with the etching rate.
63

Piezoelectric coefficients of gallium arsenide, gallium nitride and aluminium nitride

Muensit, Supasarote January 1999 (has links)
"1998"--T.p. / Thesis (PhD)--Macquarie University, School of Mathematics, Physics, Computing and Electronics, 1999. / Includes bibliographical references. / Introduction -- A Michelson interferometer for measurement of piezoelectric coefficients -- The piezoelectric coefficient of gallium arsenide -- Extensional piezoelectric coefficients of gallium nitrides and aluminium nitride -- Shear piezoelectric coefficients of gallium nitride and aluminium nitride -- Electrostriction in gallium nitride, aluminium nitride and gallium arsenide -- Summary and prognosis. / The present work represents the first use of the interferometric technique for determining the magnitude and sign of the piezoelectric coefficients of III-V compound semiconductors, in particular gallium arsenide (GaAs), gallium nitride (GaN), and aluminium nitride (AIN). The interferometer arrangement used in the present work was a Michelson interferometer, with the capability of achieving a resolution of 10⁻¹³ m. -- The samples used were of two types. The first were commercial wafers, with single crystal orientation. Both GaAs and GaN were obtained in this form. The second type of sample was polycrystalline thin films, grown in the semiconductor research laboratories at Macquarie University. GaN and AIN samples of this type were obtained. -- The d₁₄ coefficient of GaAs was measured by first measuring the d₃₃ value of a [111] oriented sample. This was then transformed to give the d₁₄ coefficient of the usual [001] oriented crystal. The value obtained for d₁₄ was (-2.7 ± 0.1) pmV⁻¹. This compares well with the most recent reported measurements of -2.69 pmV⁻¹. The significance of the measurement is that this represents the first time this coefficient has been measured using the inverse piezoelectric effect. -- For AIN and GaN samples, the present work also represents the first time their piezoelectric coefficients have been measured by interferometry. For GaN, this work presents the first reported measurements of the piezoelectric coefficients, and some of these results have recently been published by the (Muensit and Guy, 1998). The d₃₃ and d₃₁ coefficients for GaN were found to be (3.4 ± 0.1) pmV⁻¹ and (-1.7 ± 0.1) pmV⁻¹ respectively. Since these values were measured on a single crystal wafer and have been corrected for substrate clamping, the values should be a good measure of the true piezoelectric coefficients for bulk GaN. -- For AIN, the d₃₃ and d₃₁ coefficients were found to be (5.1 ± 0.2) pmV⁻¹, and (-2.6 ± 0.1) pmV⁻¹ respectively. Since these figures are measured on a polycrystalline sample it is quite probable that the values for bulk AIN would be somewhat higher. / The piezoelectric measurements indicate that the positive c axis in the nitride films points away from the substrate. The piezoelectric measurements provide a simple means for identifying the positive c axis direction. -- The interferometric technique has also been used to measure the shear piezoelectric coefficient d₁₅ for AIN and GaN. This work represents the first application of this technique to measure this particular coefficient. The d₁₅ coefficients for AIN and GaN were found to be (-3.6 ± 0.1) pmV⁻¹ and (-3.1 ± 0.1) pmV⁻¹ respectively. The value for AIN agrees reasonably well with the only reported value available in the literature of -4.08 pmV⁻¹. The value of this coefficient for GaN has not been measured. -- Some initial investigations into the phenomenon of electrostriction in the compound semiconductors were also performed. It appears that these materials have both a piezoelectric response and a significant electrostrictive response. For the polycrystalline GaN and AIN, the values of the M₃₃ coefficients are of the order of 10⁻¹⁸ m²V⁻². The commercial single crystal GaN and GaAs wafers display an asymmetric response which cannot be explained. / Mode of access: World Wide Web. / Various pagings ill
64

Thermal analysis of A1GaN/GaN HEMT monolithic integration with CMOS on silicon <111> substrates /

Chyurlia, Pietro Natale Alessandro, January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2007. / Includes bibliographical references (p. 73-76). Also available in electronic format on the Internet.
65

Micro-poutres résonantes à base de films minces de nitrure d’aluminium piézoélectriques, application aux capteurs de gaz gravimétriques / Modeling, fabrication and characterization of resonant piezoelectric nano mechanical systems for high resolution chemical sensors

Ivaldi, Paul 13 May 2014 (has links)
Les MEMS et NEMS résonants sont d'excellents candidats pour la réalisation de systèmes de détection de gaz haute résolution et faible couts ayant des applications dans les domaines de la sécurité, la défense, l'environnement et la santé. Cependant, la question du choix des techniques de transduction est toujours largement débattue. La transduction piézoélectrique pourrait être avantageusement exploitée mais elle est encore peu connue à l'échelle nanométrique. L'objectif de cette thèse est donc de progresser vers la réalisation de capteur de gaz à haute résolution à l'aide résonateurs à base de micro / nano poutres piézoélectriques en couvrant la chaîne de prototypage complète depuis les techniques de dépôt des matériaux jusqu'à l'expérience de preuve de principe de mesure de gaz. Pour cela, notre première contribution concerne la modélisation analytique des performances et l'optimisation, design et système, d'un capteur de gaz à base de poutres résonantes piézoélectriques. En particulier, nous démontrons que la diminution de l'épaisseur du film piézoélectrique actif sous la barre des 100 nm permet d'atteindre les meilleures performances. La deuxième contribution concerne la fabrication, la caractérisation et la démonstration des performances capteur de poutres résonantes de 80 μm de long exploitant un film piézoélectrique en AlN de 50 nm d'épais. Ainsi nous avons démontré expérimentalement la stabilité fréquentielle exceptionnelle de ces dispositifs atteignant des déviations standard de l'ordre de 〖10〗^(-8), au niveau de l’état de l'art. Ainsi, ils permettent la détection de vapeurs Di -Methyl -méthyl- phosphonates, un simulateur de gaz sarin, avec des concentrations aussi faibles que 10 ppb. Bien que le niveau d'intégration de notre système de détection ne soit pas suffisant, ces résultats prouvent le fort potentiel de ces résonateurs cantilever piézoélectriques pour un développement industriel futur. / Resonant MEMS and NEMS are excellent candidate for the realization of low cost and high resolution gas sensing systems that have several applications in security, defense, and environment and health care domains. However, the question of the transduction technique used to couple micro or nano scale signals to the macro scale is still a key issue. Piezoelectric transduction can be advantageously exploited but has been rarely studied at the nano-scale. The objective of this PhD is thus to progress toward the realization of high-resolution gas sensor using piezoelectric micro/nano cantilevers resonators and cover the whole prototyping chain from device fabrication to proof of principle experiment. Our first contribution in this research relates the analytical modeling of the sensing performance and the system and design optimization. In particular we demonstrate that decreasing the piezoelectric active film thickness below 100 nm is particularly beneficial. The second contribution relates the fabrication, characterization and demonstration of the high sensing performances of 80 μm long cantilevers embedding a 50 nm thick piezoelectric AlN film for transduction. These devices exhibit state of the art performances in terms of resonance frequency deviation down to the 〖10〗^(-8) range. They allow thus the detection of Di-Methyl-Methyl-Phosphonate vapors, a sarin gas simulant, with concentration as low as 10 ppb. Although the level of integration of our sensing system is not sufficient for real life application, these results prove the high potential of these piezoelectric cantilever resonators for future industrial development.
66

Rozsáhlé defekty v nitridech Ga a Al / Extended defects in Ga and Al nitrides

Vacek, Petr January 2021 (has links)
III-nitridy běžně krystalizují v hexagonální (wurtzitové) struktuře, zatímco kubická (sfaleritová) struktura je metastabilní a má pouze mírně vyšší energii. Jejich fyzikální vlastnosti jsou silně ovlivněny přítomností rozsáhlých defektů, které jsou v těchto dvou strukturách od sebe odlišné. U wurtzitových nitridů se jedná primárně o vláknové dislokace. Některé vláknové dislokace tvoří hluboké energetické stavy v zakázaném pásu, kterými ovlivňují elektrické a optoelektronické vlastnosti těchto materiálů. Oproti tomu, kubické nitridy obsahují množství vrstevných chyb, které představují lokální transformace do stabilnější wurtzitové struktury. Cílem této práce je charakterizovat rozsáhlé defekty v obou krystalových strukturách pomocí elektronové mikroskopie, mikroskopie atomárních sil a rentgenové difrakce. Prokázali jsme, že vzorky GaN/AlN a AlN s orientací (0001) rostlé na substrátu Si (111) pomocí epitaxe z organokovových sloučenin obsahují velkou hustotu vláknových dislokací. Nejčastější jsou dislokace s Burgersovým vektorem s komponentou ve směru a wurtzitové struktury, následované dislokacemi s Burgersovým vektorem s komponentou ve směru a+c, zatímco dislokace s Burgersovým vektorem s c komponentou jsou relativně vzácné. Pravděpodobný původ vláknových dislokací je diskutován v souvislosti s různými mechanismy růstu těchto vrstev. Prizmatické vrstevné chyby byly nalezeny v tenkých nukleačních vrstvách AlN, ale v tlustších vrstvách již nebyly přítomny. Na rozhraní AlN / Si byla nalezena amorfní vrstva složená ze SiNx a částečně taky z AlN. Navrhujeme, že by tato amorfní vrstva mohla hrát významnou roli při relaxaci misfitového napětí. Analýza elektrické aktivity rozsáhlých defektů v AlN byla provedena pomocí měření proudu indukovaného elektronovým svazkem. Zjistili jsme, že vláknové dislokace způsobují slabý pokles indukovaného proudu. Díky jejich vysoké hustotě a rovnoměrnému rozložení však mají větší vliv na elektrické vlastnosti, než mají V-defekty a jejich shluky. Topografické a krystalografické defekty byly studovány na nežíhaných a žíhaných nukleačních vrstvách kubického GaN deponovaných na 3C-SiC (001) / Si (001) substrátu. Velikost ostrůvků na nežíhaných vzorcích se zvyšuje s tloušťkou nukleační vrstvy a po žíhání se dále zvětšuje. Po žíhání se snižuje pokrytí substrátu u nejtenčích nukleačních vrstev v důsledku difúze a desorpce (nebo leptání atmosférou reaktoru). Vrstevné chyby nalezené ve vrstvách GaN, poblíž rozhraní se SiC, byly většinou identifikovány jako intrinsické a byly ohraničené Shockleyho parciálními dislokacemi. Jejich původ byl diskutován, jako i vliv parciálních dislokací na relaxaci misfitového napětí. Díky velkému množství vrstevných chyb byly podrobněji studovány jejich interakce. Na základě našich zjištění jsme vyvinuli teoretický model popisující anihilaci vrstevných chyb v kubických vrstvách GaN. Tento model dokáže předpovědět pokles hustoty vrstevných chyb se zvyšující se tloušťkou vrstvy.
67

CMOS kompatibilní piezoelektrický rezonátor s FET strukturou pro řízení vlastností grafenové monovrstvy / CMOS compatible piezoelectric resonator with FET structure for graphene monolayer properties modulation

Gablech, Imrich January 2018 (has links)
Práce je zaměřena na výzkum nové struktury umožňující charakterizaci fyzikálních vlastností grafenu při přesně řízených podmínkách. Návrh spojuje MEMS piezoelektrický rezonátor spolu s Hall Bar/FET strukturou. Tento přístup umožňuje měnit vlastnosti grafenu odděleně nebo společně dvěma metodami. Mechanický způsob je založen na relativní deformaci způsobené rezonátorem, na kterém je umístěna grafenová monovrstva. Navrhovaná struktura umožňuje měřit vlastnosti grafenu vyvolané pouze změnou mechanického pnutí a frekvencí nucených kmitů bez vlivu vnějšího elektrického pole. Druhý přístup přidává možnost ovládat fyzikální vlastnosti grafenu pomocí elektrického pole FET struktury. Tato technika využívá grafenovou monovrstvu jako laditelný sensor pro molekulární detekci. Měření koncentrace v jednotkách ppb není konstrukčně ničím limitováno. Realizované frekvenčně laditelné piezoelektrické MEMS rezonátory s monovrstvou grafenu budou využitelné v mnoha oblastech pro detekci na molekulové úrovni. Výsledné struktury budou vyrobeny v souladu s požadavky na bio- a CMOS kompatibilitu.
68

Croissance directe de graphène par dépôt chimique en phase vapeur sur carbure de silicium et nitrures d'éléments III / Direct growth of graphene by chemical vapor deposition on silicon carbide and III-nitrides

Dagher, Roy 22 September 2017 (has links)
Le graphène est un matériau bidimensionnel appartenant à la famille des allotropes du carbone. Il consiste en une couche atomique restant stable grâce à des liaisons chimiques fortes dans le plan entre les atomes de carbone. C'est un semi-conducteur sans bande interdite (gap) avec une dispersion d'énergie linéaire près des points de Dirac, ce qui facilite le transport balistique des porteurs de charge. De plus, tout comme n'importe quel semi-conducteur, il est possible de contrôler ses propriétés électriques sous l'influence d'un champ électrique externe, ce qui permet de modifier la densité de porteurs et leur type (électrons ou trous). Le graphène peut être élaboré par différentes techniques, mais nous avons considéré la croissance directe sur le carbure de silicium (SiC) par dépôt chimique en phase vapeur (CVD) avec une source de carbone externe, technique développée dans notre laboratoire depuis 2010. Cette approche est attrayante car elle permet de contrôler les propriétés du graphène en modifiant les paramètres de croissance. Notre objectif dans ce manuscrit est de donner une idée plus approfondie de cette technique de croissance et d'étudier son potentiel pour la croissance du graphène. À cette fin, nous avons discuté en détail de différents aspects de la croissance, en commençant par des simulations thermodynamiques pour comprendre la chimie gouvernant cette méthode. Nous avons également étudié l'influence des différents paramètres de croissance sur la formation du graphène et sur ses propriétés, tels que le temps de croissance, le débit de propane et d'autres paramètres. Cependant, nous nous sommes principalement concentrés sur deux paramètres majeurs : la quantité d'hydrogène dans le mélange gazeux, surtout que la croissance se fait sous hydrogène et argon, et la désorientation du substrat. Nos recherches ont révélé que la structure du graphène peut être modifiée en fonction de la proportion de l’hydrogène dans le mélange des gaz utilisé pour la croissance. Pour une faible proportion d’hydrogène, la croissance du graphène est associée à une reconstruction d'interface de (6√3×6√3), alors que pour une proportion élevée d’hydrogène, la couche de graphène est désordonnée dans le plan. Ces observations sont liées à l'intercalation de l'hydrogène à l'interface entre la couche de graphène et le substrat SiC, ce qui peut favoriser ou interdire la formation de la reconstruction (6√3×6√3) comme nous l'avons discuté dans le manuscrit. On s'attend à ce que la présence des deux structures de graphène ait un effet sur la contrainte dans la couche de graphène. Pour cette raison, nous avons discuté en détail les origines de la contrainte dans le graphène et tenté de corréler l'intercalation de l'hydrogène à l’interface avec la contrainte. Aussi, nous avons montré que l'angle de désorientation du substrat a une influence directe sur la croissance du graphène, affectant principalement la morphologie mais également la contrainte dans la couche du graphène. Enfin, nous avons pu produire du graphène de haute qualité, tout en démontrant la possibilité de contrôler ses propriétés électriques avec les conditions de croissance. Dans la deuxième partie de ce travail, nous avons étendu notre étude à la croissance du graphène sur les semi-conducteurs de type nitrures d’éléments III et en particulier le nitrure d’aluminium (AlN) massif ainsi que des couches hétéroépitaxiées d’AlN/SiC et AlN/Saphir, ce qui ouvre de nouvelles opportunités pour des applications innovantes. La croissance du graphène a été précédée d'une étude de recuit sur les différents échantillons d’AlN, dans le but d'améliorer leur qualité de surface, mais aussi pour tester leur stabilité à la température nécessaire pour la croissance du graphène. Bien que le film d’AlN ait été incapable de résister à la température élevée dans certains cas, une amélioration de la qualité cristalline a été détectée, attribuée à l'effet de recuit. / Graphene is a two-dimensional material belonging to the family of carbon allotropes, consisting of a stable single atomic layer owing to strong in-plane chemical bonds between carbon atoms. It can be identified as a gapless semiconductor with a linear energy dispersion near the Dirac points, which facilitates ballistic carrier transport. In addition, similarly to any semiconductor, it is possible to control its electrical properties under the influence of an external electric field, resulting in the tuning of its carrier density and doping type, i.e. electrons or holes. Graphene can be elaborated by different techniques and approaches. In this present work, we have considered the direct growth on silicon carbide (SiC) by chemical vapor deposition (CVD) with an external carbon source. This approach which has started to be developed in our laboratory since 2010 is very promising since it allows to control the graphene properties by manipulating the growth parameters. Our objective in this manuscript is to give further insights into this growth technique and to study its potential for the growth of graphene. For this purpose, we have discussed in details different aspects of the growth, starting with thermodynamic simulations to understand the chemistry behind our distinct growth approach. We have also investigated the influence of the different growth parameters, such as the growth time, the propane flow rate and other parameters on the growth of graphene and its properties. However, we mainly focused on two major factors: the hydrogen amount in the gas mixture, especially since the growth is carried out under hydrogen and argon, and the substrate’s miscut angle. Our investigations revealed that the graphene structure can be altered depending on the hydrogen percentage in the gas mixture considered for the growth. For low hydrogen percentage, the graphene growth is associated with a (6√3×6√3) interface reconstruction, whereas for high hydrogen percentage, the graphene layer is dominated by in-plane rotational disorder. These observations are related to the hydrogen intercalation at the interface between the graphene layer and the SiC substrate, which can allow or prohibit the formation of the (6√3×6√3) interface reconstruction as we have discussed thoroughly in this manuscript. The presence of two graphene structures was expected to impact the strain within the graphene layer. For this reason, we have discussed in details the origins of the strain in graphene and attempted to correlate the hydrogen intercalation at the interface to the strain amount. Furthermore, the substrate’s miscut angle was also found to have a direct influence on the growth of graphene, mainly affecting the morphology but also the strain within the graphene layer. In light of the different studies and results, we were able to combine the ideal growth parameters to produce state-of-the art graphene, while demonstrating the possibility of tuning its electrical properties with the growth conditions. In a second part of this work, we extended our study to the growth of graphene on III-nitrides semiconductors. We have considered substrates and templates such as bulk aluminum nitride (AlN), AlN/SiC and AlN/sapphire, which opens new opportunities for innovative applications. The growth of graphene was preceded by an annealing study on the different AlN substrates, in an attempt to enhance their surface quality, but also to test their stability at the temperatures necessary for the growth of graphene. Although the AlN film was found to be unable to withstand the high temperature in some cases, an enhancement of the crystalline quality was detected, attributed to the annealing effect.
69

Quantum Chemical Feasibility Study of Methylamines as Nitrogen Precursors in Chemical Vapor Deposition

Rönnby, Karl January 2015 (has links)
The possibility of using methylamines instead of ammonia as a nitrogen precursor for the CVD of nitrides is studied using quantum chemical computations of reaction energies: reaction electronic energy (Δ𝑟𝐸𝑒𝑙𝑒𝑐) reaction enthalpy (Δ𝑟𝐻) and reaction free energy (Δ𝑟𝐺). The reaction energies were calculated for three types of reactions: Uni- and bimolecular decomposition to more reactive nitrogen species, adduct forming with trimethylgallium (TMG) and trimethylaluminum (TMA) followed by a release of methane or ethane and surface adsorption to gallium nitride for both the unreacted ammonia or methylamines or the decomposition products. The calculations for the reaction entropy and free energy were made at both STP and CVD conditions (300°C-1300°C and 50 mbar). The ab inito Gaussian 4 (G4) theory were used for the calculations of the decomposition and adduct reactions while the surface adsorptions were calculated using the Density Functional Theory method B3LYP. From the reactions energies it can be concluded that the decomposition was facilitated by the increasing number of methyl groups on the nitrogen. The adducts with mono- and dimethylamine were more favorable than ammonia and trimethylamine. 𝑁𝐻2 was found to be most readily to adsorb to 𝐺𝑎𝑁 while the undecomposed ammonia and methylamines was not willingly to adsorb.
70

Otimização das propriedades estruturais de filmes de nitreto de alumínio visando sua aplicação como material piezoelétrico. / Structural properties optimization of aluminum nitride films aiming their application as piezoelectric material.

Rubens Martins Cunha Junior 01 June 2015 (has links)
Neste trabalho é apresentado um estudo sobre a produção e caracterização do nitreto de alumínio (AlN) obtido pela técnica de r.f. Magnetron Sputtering reativo. Aqui reportamos o efeito dos parâmetros de deposição, como densidade de potência de r.f., temperatura e pressão de processo nas propriedades estruturais, morfológicas e elétricas dos filmes de AlN obtidos. Foram realizados estudos sobre os modos vibracionais, pela técnica de espectroscopia de infravermelho por transformada de Fourier (FTIR), das orientações cristalográficas por difração de raios X e da morfologia da superfície pela técnica de microscopia de força atômica (AFM). Estes estudos nos permitiram produzir filmes finos de AlN com uma alta orientação na direção cristalográfica [002] com uma potência de r.f. de 1,23 W/cm2 , uma temperatura de deposição de 200°C e uma pressão de processo de 2 mTorr. Este estudo nos permitiu fabricar filmes de AlN com alta orientação [002] à temperatura ambiente a partir de um alvo de Al. O coeficiente piezoelétrico d33 variou de aproximadamente 4 a 6 pm/V e o d31 2 a 3 pm/V para filmes cristalinos e d33 3 pm/V e d31 1,5 pm/V para filmes amorfos. Os coeficientes piezoelétricos d33 and d31 foram estimados pelo método capacitivo proposto por Mahmoud Al Ahmad and Robert Plana, através da variação das dimensões geométricas induzidas pelo campo elétrico aplicado. / In this work we present a study about the production and characterization of aluminum nitride (AlN) obtained by r.f. Reactive Magnetron Sputtering. Here we report the effect of the deposition parameters, such as r.f. power density, and deposition temperature and pressure, on the morphological, structural and electrical properties of the obtained AlN thin films. In this work we have performed studies concerning the vibrational modes by Fourier Transform Infrared Absorption technique (FTIR), the crystallographic orientations by X-ray diffraction and the surface morphology by Atomic Force Microscopy (AFM). This study allowed us to produce high oriented [002] AlN thin films with a r.f. power density of 1.23 W/cm2, a deposition temperature of 200ºC and a process pressure of 2 mTorr. This study allowed us to produce high oriented [002] AlN thin films at room temperature from a pure Al target. The piezoelectric coefficient d33 was around 4 to 6 pm/V and d31 2 to 3 pm/V to crystalline films and d33 3 pm/V and d31 1.5 pm/V amorphous ones. d33 and d31 piezoelectric coefficients were estimated by the capacitive method proposed by Mahmoud Al Ahmad and Robert Plana, through its geometrical dimensions variation.

Page generated in 0.0807 seconds