• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 35
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Etudes structurales et propriétés enzymatiques de deux nouvelles aminopeptidases TETs auto-compartimentées chez les archées / Structural studies and enzymatic properties of two novel self-assembled aminopeptidases TETs from archaea.

Basbous, Hind 19 December 2016 (has links)
Les aminopeptidases représentent un groupe d’enzymes qui possèdent une fonction cellulaire clef dans les mécanismes physiologiques et pathologiques. Elles interviennent dans la cascade enzymatique après l’action des endoprotéases, dans l’homéostasie au travers le renouvellement du pool d’acides aminés, dans le métabolisme énergétique, la régulation de l’activité des peptides bioactifs, la présentation antigénique ainsi dans une diversité de mécanismes pathologiques tels que les maladies neurologiques et les infections virales et parasitaires. Les aminopeptidases TETs sont capables de former des macro-assemblages tétraédriques comprenant douze sous-unités. En vue de mieux comprendre leur fonction biologique et leur mode d'action, nous avons étudié les propriétés fonctionnelles et structurales de deux nouveaux complexes TETs issus d'archées hyperthermophiles. L'archée hyperthermophile Methanocaldococcus jannaschii ne possède qu'une version de TET (MjTET) qui a été produite dans Escherichia coli et purifiée sous forme de dodécamère. La recherche de son activité enzymatique et de ses substrats peptidiques par des tests chromogéniques et fluorogéniques, ainsi que des études par HPLC en phase inverse, montre que cette enzyme est une leucine aminopeptidase activée par le cobalt se distinguant des autres aminopeptidases M42 par son très large spectre d'action qui s'étend aux résidus aromatiques. Une structure complète de cette aminopeptidase a été résolue en combinant la cristallographie (2.4 Å) et la cryo-EM (4,1 Å). L'analyse de la poche de spécificité de MjTET permet de mieux comprendre les bases structurales de la discrimination de substrat chez les TETs. De plus, l'analyse de la structure interne de la particule permet de proposer un nouveau mécanisme de navigation des peptides à l’intérieur des particules tétraédriques de la famille TET.L'archée hyperthermophile Pyrococcus horikoshii comporte trois types de complexes TETs. L'étude d'une protéine présentant ~20 % d'identité avec ces systèmes, nous a permis d'identifier une quatrième version du système TET dans cet organisme : PhTET4. La protéine recombinante a été purifiée. Elle forme un complexe dodécamérique tétraédrique. Les études biochimiques révèlent que l'enzyme possède une spécificité très étroite dirigée exclusivement vers l'hydrolyse des résidus glycines de l'extrémité N-terminale des peptides. De plus, elle estactivée par le nickel. Ces caractéristiques permettent de proposer que, chez les archées, la multiplication et la spécialisation des enzymes TETs seraient associées au caractère hétérotrophes alors que le système des archées autotrophes se réduirait à une TET unique apte à assurer une fonction de « ménage ». / Aminopeptidases represent a group of enzymes displaying key cellular function inphysiological and pathological mechanisms. They are involved in the enzymatic cascade beyond the action of endoproteases, in homeostasis through the renewal of the amino acid pool, in the energy metabolism, in the regulation of bioactive peptide activities, in the antigen presentation and in a diversity of pathological mechanisms such as neurological diseases as well as viral and parasitic infections. Aminopeptidases TET are able of forming tetrahedral macro-assemblies built by twelve subunits. In order to better understand their biological function and their mode of action, we studied the functional and structural properties of two novel TET complexes derived from hyperthermophilic archaea. The hyperthermophilic archaeon Methanocaldococcus jannaschii has only one version of TET (MjTET) that was produced in Escherichia coli and purified as dodecameric macromolecule. The search for its enzymatic activity and peptide substrates by using chromogenic/fluorogenic assays and reverse phase HPLC studies, demonstrated that this enzyme is a cobalt-activated leucine aminopeptidase, discriminated from other M42 aminopeptidases by its very broad activity spectrum, that extends to aromatic residues. Complete structure of this aminopeptidase was determined by combining X-ray crystallography (2.4 Å) and cryo-electron microscopy (4.1 Å). Analysis of MjTET specificity pocket indicated possible molecular bases for substrate discrimination in TET peptidases. In depth investigation of the particle internal structure allowed to propose a novel peptide trafficking mechanism for the TET family tetrahedral particles. Three types of TET complexes are present in the hyperthermophilic archaea, Pyrococcus horikoshii. The study of an unassigned protein displaying ~20% identity with the PhTETs systems allowed us to identify a fourth version of TET complex in this organism: PhTET4. The recombinant protein was purified. It formed tetrahedral dodecameric complex. Biochemical studies indicated that the enzyme has a very narrow hydrolytic specificity directed exclusively toward the peptide N-terminal glycine residues. In addition, this enzyme is activated by nickel ions. These features allowed proposing that, in archaea, the multiplicity of specialized TET systems could be associated with heterotrophy while unique TET system displaying “housekeeping” function is present in autotrophic organisms.
32

Die Rolle von Aminopeptidasen in der MHC Klasse I Antigenprozessierung des HLA-A2-restingierten HCMV pp 65 495-503 Epitops im Zusammenhang mit dem peptide-loading complex

Urban, Sabrina 08 September 2009 (has links)
Das Ubiquitin Proteasom System generiert die Mehrheit der antigenen Peptide, die zusammen mit MHC Klasse I Molekülen präsentiert werden, wobei durch Kooperation mit alternativen proteolytischen Systemen die Vielfalt der möglichen MHC I Liganden erhöht wird. In diesem Zusammenhang, insbesondere im Rahmen einer Immunantwort, ist die Rolle von Aminopeptidasen bislang nur ungenügend charakterisiert. In der vorliegenden Arbeit wurde der modulatorische Einfluss von zytosolischen und im ER lokalisierten Aminopeptidasen auf die Generierung des HCMV pp65495-503 Epitops durch Prozessierung von proteasomal generierten Peptidprodukten untersucht. Dafür wurde in pp65 exprimierenden Zellen die Expression einzelner Aminopeptidasen mittels siRNA inhibiert und der Effekt auf die Epitoppräsentation über die Aktivierung pp65495-503 spezifischer CTL bestimmt. Es zeigte sich, dass TPPII, LAP, AP-B und POP limitierend auf die Epitoppräsentation wirken. Damit wurden die Peptidasen AP-B und POP erstmalig in direkten Zusammenhang mit der MHC Klasse I Antigenprozessierung gebracht. Analysen weiterer zytosolischer Peptidasen wie TOP, BH und PSA zeigten keinen signifikanten Effekt auf die Epitoppräsentation, so dass diese Peptidasen an der zellulären Prozessierung des pp65 Antigens nicht beteiligt sind. Die Trimmaktivität von ERAPI und ERAPII im ER hingegen hatte einen bedeutenden Anteil an der pp65495-503 Epitopgenerierung. In Immunpräzipitationsexperimenten konnte zudem die Interaktion der ER Aminopeptidasen mit dem peptide-loading complex zum ersten Mal nachgewiesen werden. Die vorliegenden Daten geben Hinweise darauf, dass die Interaktion von ERAPI und ERAPII mit dem Komplex unabhängig von dessen vollständiger Assemblierung mit dem TAP Transporter stattfinden kann und vermutlich über Tapasin vermittelt wird. Da diese Assoziation durch IFNgamma induziert wird, könnte sie zu einer effizienteren Antigenprozessierung und -Präsentation, vor allem unter Infektionsbedingungen, beitragen. / The ubiquitin proteasome system is responsible for the generation of the majority of MHC class I presented antigenic peptides. By cooperation with alternative proteolytic systems the diversity of MHC class I ligands is increased. In this context, especially during immune response, the role of aminopeptidases is barely characterised. In this project the effect of cytosolic and ER-resident aminopeptidases on processing of proteasomal generated peptides was investigated with regard to HCMV pp65495-503 epitope generation. Therefore, expression level of single aminopeptidases was down regulated by siRNA in pp65 expressing cells and the effect of down regulation on epitope presentation was analysed by activation of pp65495-503 specific CTLs. It could be demonstrated that TPPII, LAP, AP-B and POP have negative effects on pp65 epitope presentation. With AP-B and POP two additional cytosolic aminopeptidases with a functional role in epitope processing were identified. Other aminopeptidases, that have been characterised as part of the antigen processing machinery, namely TOP, BH and PSA, did not affect pp65 epitope generation. In contrast, trimming by ERAPI and ERAPII in the ER resulted in an efficient epitope presentation. For the first time, experimental evidence was provided that the two ER-resident peptidases interact with the MHC class I peptide-loading complex (PLC). The obtained results indicate that this association takes place independently of the assembly of the entire complex including TAP and is probably mediated by tapasin. The observation that this complex formation is inducible by IFNgamma suggests that the association of ERAPI and ERAPII to the PLC accounts for a better antigen processing and presentation mainly at the site of infection.
33

Expression, purification et cristallisation de l'aminopeptidase-N humaine (APN ou CD13) : évaluation in vitro et in vivo d'inhibiteurs sélectifs

Schmitt, Céline 18 September 2012 (has links) (PDF)
L'Aminopeptidase-N (APN ou CD13) [EC.3.4.11.2] est une ectoenzyme homodimérique de nature glycoprotéique appartenant à la famille M1 des zinc-aminopeptidases. Elle est surexprimée à la surface des cellules endothéliales angiogéniques, ainsi que sur un certain nombre de cellules tumorales. Et il existe une corrélation étroite entre l'élévation de l'expression de l'APN, une activité enzymatique accrue et le pouvoir invasif de nombreux types de cellules tumorales. Des inhibiteurs puissants et sélectifs de l'APN, appartenant à la famille des composés de type amino-benzosubérone, ont été synthétisés au laboratoire. Ces composés ont été testés in vitro et in vivo, et il est apparu qu'ils présentaient une affinité variant du nano au picomolaire. En parallèle à ces essais, un nouveau projet a débuté il y a quelques années au laboratoire, visant à déterminer la structure tridimensionnelle de l'APN humaine. La connaissance de cette structure constitue un enjeu majeur car des co-cristallisations avec ces inhibiteurs permettraient de résoudre le mode de liaison de cette nouvelle famille de composés à l'APN. La difficulté de cette étude réside dans le fait que l'APN est une glycoprotéine membranaire particulièrement difficile à purifier à partir de tissus ; de plus, cette protéine étant ancrée dans la membrane de la cellule, sa cristallisation en est d'autant plus complexe. Plusieurs stratégies de clonage et de surexpression de l'APN humaine ont été envisagées, avec pour objectif final, l'obtention d'une protéine cristallisable, glycosylée ou non.
34

The Study of Two Strategies for Decreasing Mutant Huntingtin: Degradation by Puromycin Sensitive AminoPeptidase and RNA Interference: A Dissertation

Chaurette, Joanna 22 May 2013 (has links)
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by a CAG repeat expansion in exon 1 of the huntingtin gene, resulting in an expanded polyglutamine (polyQ) repeat in the huntingtin protein. Patients receive symptomatic treatment for motor, emotional, and cognitive impairments; however, there is no treatment to slow the progression of the disease, with death occurring 15-20 years after diagnosis. Mutant huntingtin protein interferes with multiple cellular processes leading to cellular dysfunction and neuronal loss. Due to the complexity of mutant huntingtin toxicity, many approaches to treating each effect are being investigated. Unfortunately, addressing one cause of toxicity might not result in protection from other toxic insults, necessitating a combination of treatments for HD patients. Ideally, single therapy targeting the mutant mRNA or protein could prevent all downstream toxicities caused by mutant huntingtin. In this work, I used animal models to investigate a potential therapeutic target for decreasing mutant huntingtin protein, and I apply bioluminescent imaging to investigate RNA interference to silence mutant huntingtin target sites. The enzyme puromycin sensitive aminopeptidase (PSA) has the unique property of degrading polyQ peptides and been implicated in the degradation of huntingtin. In this study, we looked for an effect of decreased PSA on the pathology and behavior in a mouse model of Huntington’s disease. To achieve this, we crossed HD mice with mice with one functional PSA allele and one inactivated PSA allele. We found that PSA heterozygous HD mice develop a greater number of pathological inclusion bodies, representing an accumulation of mutant huntingtin in neurons. PSA heterozygous HD mice also exhibit worsened performance on the raised-beam test, a test for balance and coordination indicating that the PSA heterozygosity impairs the function of neurons with mutant huntingtin. In order to test whether increasing PSA expression ameliorates the HD phenotype in mice we created an adeno-associated virus (AAV) expressing the human form of PSA (AAV-hPSA). Unexpectedly, testing of AAV-hPSA in non-HD mice resulted in widespread toxicity at high doses. These findings suggest that overexpression of PSA is toxic to neurons in the conditions tested. In the second part of my dissertation work, I designed a model for following the silencing of huntingtin sequences in the brain. Firefly luciferase is a bioluminescent enzyme that is extensively used as a reporter molecule to follow biological processes in vivo using bioluminescent imaging (BLI). I created an AAV expressing the luciferase gene containing huntingtin sequences in the 3'-untranslated region (AAV-Luc-Htt). After co-injection of AAV-Luc-Htt with RNA-silencing molecules (RNAi) into the brain, we followed luciferase activity. Using this method, we tested cholesterol-conjugated siRNA, un-conjugated siRNA, and hairpin RNA targeting both luciferase and huntingtin sequences. Despite being able to detect silencing on isolated days, we were unable to detect sustained silencing, which had been reported in similar studies in tissues other than the brain. We observed an interesting finding that co-injection of cholesterol-conjugated siRNA with AAV-Luc-Htt increased luminescence, findings that were verified in cell culture to be independent of serotype, siRNA sequence, and cell type. That cc-siRNA affects the expression of AAV-Luc-Htt reveals an interesting interaction possibly resulting in increased delivery of AAV into cells or an increase in luciferase expression within the cell. My work presents a method to follow gene silencing of huntingtin targets in the brain, which needs further optimization in order to detect sustained silencing. Finally, in this dissertation I continue the study of bioluminescent imaging in the brain. We use mice that have been injected in the brain with AAV-Luciferase (AAV-Luc) to screen 34 luciferase substrate solutions to identify the greatest light-emitting substrate in the brain. We identify two substrates, CycLuc1 and iPr-amide as substrates with enhanced light-emitting properties compared with D-luciferin, the standard, commercially available substrate. CycLuc1 and iPr-amide were tested in transgenic mice expressing luciferase in dopaminergic neurons. These novel substrates produced luminescence unlike the standard substrate, D-luciferin which was undetectable. This demonstrates that CycLuc1 and iPr-amide improve the sensitivity of BLI in low expression models. We then used CycLuc1 to test silencing of luciferase in the brain using AAV-shRNA (AAV-shLuc). We were unable to detect silencing in treated mice, despite a 50% reduction of luciferase mRNA. The results from this experiment identify luciferase substrates that can be used to image transgenic mice expressing luciferase in dopaminergic neurons. My work contributes new data on the study of PSA as a modifier of Huntington’s disease in a knock-in mouse model of Huntington’s disease. My work also makes contributions to the field of bioluminescent imaging by identifying and testing luciferase substrates in the brain to detect low level of luciferase expression.
35

Expression, purification et cristallisation de l'aminopeptidase-N humaine (APN ou CD13) : évaluation in vitro et in vivo d'inhibiteurs sélectifs / Expression, purification and crystallization of aminopeptidase-N (APN or CD13) : In vitro and in vivo evaluation of selective inhibitors

Schmitt, Céline 18 September 2012 (has links)
L’Aminopeptidase-N (APN ou CD13) [EC.3.4.11.2] est une ectoenzyme homodimérique de nature glycoprotéique appartenant à la famille M1 des zinc-aminopeptidases. Elle est surexprimée à la surface des cellules endothéliales angiogéniques, ainsi que sur un certain nombre de cellules tumorales. Et il existe une corrélation étroite entre l’élévation de l’expression de l’APN, une activité enzymatique accrue et le pouvoir invasif de nombreux types de cellules tumorales. Des inhibiteurs puissants et sélectifs de l’APN, appartenant à la famille des composés de type amino-benzosubérone, ont été synthétisés au laboratoire. Ces composés ont été testés in vitro et in vivo, et il est apparu qu’ils présentaient une affinité variant du nano au picomolaire. En parallèle à ces essais, un nouveau projet a débuté il y a quelques années au laboratoire, visant à déterminer la structure tridimensionnelle de l’APN humaine. La connaissance de cette structure constitue un enjeu majeur car des co-cristallisations avec ces inhibiteurs permettraient de résoudre le mode de liaison de cette nouvelle famille de composés à l’APN. La difficulté de cette étude réside dans le fait que l’APN est une glycoprotéine membranaire particulièrement difficile à purifier à partir de tissus ; de plus, cette protéine étant ancrée dans la membrane de la cellule, sa cristallisation en est d’autant plus complexe. Plusieurs stratégies de clonage et de surexpression de l’APN humaine ont été envisagées, avec pour objectif final, l’obtention d’une protéine cristallisable, glycosylée ou non. / Aminopeptidase-N (APN or CD13) [EC.3.4.11.2] is a highly glycosylated type II membrane-bound ectoenzyme that belongs to the M1 family of zinc-dependent aminopeptidases. The members of this family have a thermolysin-like catalytic domain with the consensus HEXXH-X18-E zinc-binding sequence and an exopeptidase motif, GXMEN, in the active site. APN/CD13 is a widespread enzyme, located in many tissues, organs and cells, whose multiple functions dependent on its location. It is overexpressed on the endothelial cells of angiogenic, but not normal, vasculature, as well as on numerous tumor cells. As it was demonstrated that APN plays a critical role in tumor cell angiogenesis and metastasis, this protein was identified as a potential target for cancer therapy. In this context, highly potent and selective non-peptidic APN inhibitors, with Ki values ranging from micro to nanomolar, were previously designed and synthesized in the laboratory. In vitro and in vivo efficacy of these novel amino-benzosuberone derivatives was tested. In parallel to these works, a new project was started a few years ago which consists to solve the 3D structure of mammalian APN. Co-crystallizations with amino-benzosuberone derivatives would determine the binding mode of these novel inhibitors. Nevertheless solving the structure of a membrane protein like mammalian APN still remains a challenge. Therefore several cloning and expression strategies for human APN production were developed.

Page generated in 0.054 seconds