• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 18
  • 8
  • 1
  • Tagged with
  • 77
  • 77
  • 35
  • 32
  • 24
  • 21
  • 16
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Thermal And Electrical Properties Of Silver And Iodine Doped Chalcogenide Glasses

Pattanayak, Pulok 02 1900 (has links)
Silver containing chalcogenide glasses have been extensively studied during the last few decades; the main interest in these materials being their electrical conductivity which changes by several orders of magnitude upon silver doping. Glassy chalcogenides doped with silver have applications in optical elements, gratings, micro-lenses, waveguides, bio & chemical sensors, solid electrolytes, batteries, etc. Chalcohalide glasses have become important in the recent times, from both scientific & technological points of view, due to the interesting properties exhibited by these glasses such as the transparency in the infrared region, the stability against devitrification, solubility of rare earth elements, etc. In this thesis work, the thermal properties and electrical switching behavior of certain silver and iodine doped chalcogenide glasses have been investigated The thesis contains five chapters: Chapter 1: This chapter is an introduction to the fundamental aspects of amorphous semiconductors with a particular reference to chalcogenide glasses. The advantages and applications of chalcogenide glasses are also described. Chapter 2: The methods of preparation and characterization of the glasses investigated are described in this chapter. Also, the details of the experiments undertaken, namely temperature modulated Alternating Differential Scanning Calorimetry (ADSC), electrical switching analysis, Photo-thermal Deflection Spectroscopy (PDS), etc, are outlined. Chapter 3: In this chapter, the thermal behavior and electrical switching of silver doped Ge-Se and As-Se chalcogenide glasses are described. Bulk, melt-quenched Se-rich Ge0.15Se0.85-xAgx glasses have been found to be microscopically phase separated and composed of Ag2Se clusters and GeSe2-Se network. When the silver concentration exceeds 10 atom %, the Ag2Se clusters embedded in the GeSe2-Se network percolate. The signature of this percolation threshold is clearly observed as the sudden appearance of two exothermic crystallization peaks in ADSC runs. Density, molar volume and micro hardness studies also strongly support the view of a percolation transition. The super-ionic conduction observed earlier in these glasses at higher silver proportions, is likely to be connected with the silver phase percolation. It has been found that Ge0.15Se0.85-xAgx glasses of lower silver concentration (x = 0.07 and 0.08) do not exhibit electrical switching at voltages up to 1100 V. A negative resistance behavior and threshold type electrical switching is seen in Ge0.15Se0.85-xAgx samples with x 0.09. Also, fluctuations are observed in the I-V characteristics of these samples, which have been attributed to the difference in thermal conductivities between the Ag2Se inclusions and the Ge-Se base glass. A sharp drop has been observed in the switching voltage with Ag concentration which is due to the more metallic nature of silver and the presence of Ag+ ions. Further, the saturation in the decrease of VT around x = 0.10, is related to silver phase percolation in these glasses. Bulk As20Se80-xAgx glasses (0 x 15) have been found to exhibit two endothermic glass transitions and two exothermic crystallization reactions on heating. Based on which it is suggested that As20Se80-xAgx glasses are also microscopically phase separated, containing Ag2Se phases embedded in an As-Se backbone. The occurrence of microscopic phase separation in As20Se80-xAgx glasses is also confirmed by SEM studies. With increasing silver concentration, the Ag2Se phase percolates in the As-Se matrix, with a well-defined percolation threshold at x = 8. This silver phase percolation is exemplified by sudden jumps in the composition dependence of the second crystallization peak and non-reversible heat-flow, Hnr obtained at the second glass transition reaction of As20Se80-xAgx glasses. The super-ionic conduction observed earlier in these glasses at higher silver proportions, is likely to be associated with the observed silver phase percolation. Like Ge0.15Se0.85-xAgx glasses, As20Se80-xAgx glasses also exhibit threshold type electrical switching with fluctuations in the I-V characteristics; these fluctuations have been attributed to the difference in thermal conductivities between the Ag2Se inclusions and the As-Se base glass. A sharp drop has been observed in the switching voltage with Ag concentration which is due to the more metallic nature of silver and the presence of Ag+ ions. Further, the saturation in the decrease of VT around x = 8, is found to be related to silver phase percolation in these glasses, which has been proposed on the basis of ADSC experiments. Chapter 4: The chapter 4 deals with thermal studies, electrical switching investigations and Photo-thermal Deflection Spectroscopic (PDS) measurements on certain Ge-Te-I and As-Te-I chalcohalide glasses. It has been found that the compositional variation of the glass transition temperature of Ge22Te78-xIx glasses, obtained by Alternating Differential Scanning Calorimetry (ADSC), exhibits a broad hump around 5 atom % of iodine. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Hnr) of Ge22Te78-xIx glasses at x = 5, which is suggestive of a thermally reversing window at this composition. Electrical switching studies on Ge22Te78-xIx glasses indicate that these glasses exhibit memory type electrical switching. At lower iodine concentrations, a decrease is seen in switching voltages with an increase in iodine content (in comparison with the base Ge22Te78 glass), which is due to the decrease in network connectivity. The increase seen in switching voltages of Ge22Te78-xIx glasses at higher iodine contents, suggests that the influence of the metallicity is stronger at higher iodine proportions. It is also interesting to note that the composition dependence of the threshold voltages shows a slope change at x = 5, the inverse rigidity percolation threshold of the Ge22Te78-xIx system. . Further, it is found that the thermal diffusivities ( D) of Ge22Te78-xIx glasses decrease with the increase in iodine content, which has been understood on the basis of fragmentation of the Ge-Te network with the addition of iodine. Also, a cusp is seen in the composition dependence of thermal diffusivity at the composition x = 5 (average coordination number, r = 2.39), which has been identified to be the inverse rigidity percolation threshold of the system at which the network connectivity is lost. ADSC studies on As45Te55-xIx chalcohalide glasses (3 x 10) reveal that there is not much variation in the glass transition temperature of As45Te55-xIx glasses, even though there is a wide variation in r . Based on this observation we suggest that the variation in glass transition temperature of network glasses is dictated by the variation in average bond energy rather than the average coordination number. Further, the non-reversing enthalpy Hnr of As45Te55-xIx glasses is found to exhibit a sharp minimum at the composition x = 6. A broad hump is also seen in glass transition and crystallization temperatures in the composition range 5 x 7. These results indicate a narrow thermally reversing window in As45Te55-xIx glasses around the composition x = 6. As45Te55-xIx glasses have been found to exhibit a memory to threshold type change in switching behavior with iodine content (x 6), which has been understood on the basis of the sharp increase in thermal diffusivity above x = 6. It is also observed that the switching voltages do not change appreciably with composition/average coordination number. Though no pronounced signature of a stiffness transition is seen in the variation with composition of VT, fluctuations are seen in the switching voltages around x = 6, the composition corresponding to the sharp thermally revering window. PDS studies indicate that the thermal diffusivities () of As45Te55-xIx chalcohalide exhibit a sharp minimum at the composition x = 6. This result reasserts the presence of a sharp thermally reversing window in As45Te55-xIx glasses around the composition x = 6. Chapter 5: The significant results obtained in the present thesis work have been summarized in this chapter. Further, the scope for future work is also presented.
62

Instability and temperature-dependence assessment of IGZO TFTs

Hoshino, Ken 12 November 2008 (has links)
Amorphous oxide semiconductors (AOSs) are of great current interest for thin-film transistor (TFT) channel layer applications. In particular, indium gallium zinc oxide (IGZO) is under intense development for commercial applications because of its demonstrated high performance at low processing temperatures. The objective of the research presented in this thesis is to provide detailed assessments of device stability, temperature dependence, and related phenomena for IGZO-based TFTs processed at temperatures between 200 °C and 300 °C. TFTs tested exhibit an almost rigid shift in log₁₀(I[subscript D]) – V[subscript GS] transfer curves in which the turn-on voltage, V[subscript ON], moves to a more positive gate voltage with increasing stress time during constant-voltage bias-stress testing of IGZO TFTs. TFT stability is improved as the post-deposition annealing temperature increases over the temperature range of 200 – 300 ºC. The turn-on voltage shift induced by constant-voltage bias-stressing is at least partially reversible; V[subscript ON] tends to recover towards its initial value of V[subscript ON] if the TFT is left unbiased in the dark for a prolonged period of time and better recovery is observed for a longer recovery period. V[subscript ON] for a TFT can be set equal to zero after bias-stress testing if the TFT electrodes are grounded and the TFT is maintained in the dark for a prolonged period of time. Attempts to accelerate the recovery process by application of a negative gate bias at elevated temperature (i.e., 100 ºC) were unsuccessful, resulting in severely degraded subthreshold swing. An almost rigid log₁₀(I[subscript D]) – V[subscript GS] transfer curve shift to a lower (more negative) V[subscript ON] with increasing temperature is observed in the range of –50 °C to +50 °C, except for a TFT with an initial V[subscript ON] equal to zero, in which case the log₁₀(ID) – V[subscript GS] transfer curve is temperature-independent. A more detailed temperature-dependence assessment, however, indicates that the log₁₀(I[subscript D]) – V[subscript GS] transfer curve shift is not exactly rigid since the mobility is found to increase slightly with increasing temperature. A noticeable anomaly is observed in certain log₁₀(I[subscript D]) – VGS transfer curves, especially when obtained at elevated temperature (e.g., 30 and 50 ºC), in which I[subscript D] decreases precipitously near zero volts in the positive gate voltage sweep. This anomaly is attributed to a gate-voltage-step-involved detrapping and subsequent retrapping of electrons in the accumulation channel and/or channel/gate insulator interface. In fact, all IGZO TFT stability and temperature-dependence trends are attributed to channel interface and/or channel bulk trapping/detrapping. / Graduation date: 2009
63

Estudo da morfologia e estrutura de filmes de oxinitreto de silício (SiOxNy) obtidos pela técnica de PECVD. / Morphological and structural studies of silicon oxynitride films (SiOxNy) obtained by PECVD technique.

Denise Criado Pereira de Souza 31 July 2007 (has links)
Neste trabalho são apresentados resultados da caracterização estrutural e morfológica de filmes de oxinitreto de silício (SiOxNy) depositados pela técnica de deposição química a vapor assistida por plasma (PECVD) a baixa temperatura (320°C). O objetivo deste trabalho é relacionar a composição química de ligas amorfas de SiOxNy com suas propriedades ópticas, estruturais, morfológicas e mecânicas visando sua aplicação em dispositivos elétricos, optoeletrônica e microestruturas. A proposta é dar continuidade a trabalhos prévios desenvolvidos no grupo, que demonstraram a viabilidade de controlar a composição química e, como conseqüência, controlar as propriedades como o índice de refração, constante dielétrica e fotoluminescência de filmes de SiOxNy. As condições de deposição foram ajustadas de forma a obter dois tipos de material: filmes de SiOxNy de composição química controlável entre a do SiO2 e a do de Si3N4 e filmes de SiOxNy com composição rica em Si. O material foi caracterizado pelas técnicas de elipsometria, índice de refração por prisma acoplado, RBS (Rutherford Backscattering Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), XANES (X-Ray Absorption Near Edge Spectroscopy) na borda K do Si, O e N, medida de stress residual e microscopia eletrônica de varredura (Scanning Electron Microscopy) e de transmissão (Transmission Electron Microscopy). Os resultados mostraram que os filmes com composição química intermediária entre a do SiO2 e a do Si3N4 apresentam arranjo estrutural estável com a temperatura, mantendo as ligações e a estrutura amorfa mesmo após tratamentos térmicos a 1000°C. Também fora demonstrada a possibilidade de obter um material com baixo stress residual e índice de refração ajustável entre 1,46 e 2, resultados ótimos para aplicações em MOEMS (micro-opto-electro- mechanical systems). Já nas amostras ricas em Si foi observada a formação de diferentes fases, sendo uma delas formada por aglomerados de Si e a outra por material constituído por uma mistura de ligações Si-O e Si-N. Este material apresenta a formação de nanocristais de Si, dependendo do conteúdo de Si e das condições do tratamento térmico, permitindo assim, sua aplicação em dispositivos emissores de luz. / In this work results on the morphological and structural characterization of silicon oxynitride (SiOxNy) films deposited by plasma enhanced chemical vapor deposition technique (PECVD) at low temperature (320°C) are presented. The main goal is to correlate the chemical composition of amorphous SiOxNy alloys to their optical, structural, morphological and mechanical properties intending applications on electrical, optoelectronic and micromechanical devices. The proposal is to continue previous research developed in this group, which demonstrated the possibility of tuning the chemical composition and, consequently, the SiOxNy films properties such as refractive index, dielectric constant and photoluminescence by the precise control of the deposition parameters. The deposition conditions were adjusted in order to obtain to material types, SiOxNy films with tunable chemical composition between SiO2 and Si3N4 and silicon-rich SiOxNy. The characterization was performed by elipsometry, refractive index by coupled prism, RBS (Rutherford Backscattering Spectroscopy), FTIR (Fourier Transform Infrared Spectroscopy), XANES (X-Ray Absorption Near Edge Spectroscopy) on K edge of Si, O and N, residual stress measurement and Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The films with chemical composition between SiO2 and Si3N4 presented stable structural arrangement with temperature, maintaining the chemical bonds and the amorphous structure after high temperature annealing. Also the results demonstrated the possibility of producing a low residual stress material and an adjustable refractive index since in the 1.46 to 2 range, excellent result for MOEMS devices (micro-opto-electro- mechanical systems applications. For silicon rich-samples the formation of different phases was observed, one formed by Si clusters and other one by a mixture of Si-O and Si-N bonds. Depending on the Si content and on the annealing conditions this material can present nanocristals, results which allowed us to understand and to optimize this material for light emitting devices applications.
64

Síntese e caracterização de filmes à base de Si e Ge dopados com espécies magnéticas / Synthesis and characterization of Si and Ge based films doped with magnetic species

Fabio Aparecido Ferri 09 August 2010 (has links)
Recentemente, a dopagem de semicondutores (envolvendo compostos II-VI, IV-VI, III-V, e do grupo-IV) com espécies magnéticas tem sido extensivamente investigada em função do seu potencial em spintrônica. Neste contexto, semicondutores magnéticos baseados no Si e no Ge são atraentes devido à sua compatibilidade com a indústria de semicondutores existente. Entretanto, a solubilidade das espécies magnéticas nestes materiais em forma cristalina é muito baixa e, consequentemente, sua atividade magnética é limitada. Este não é o caso para o silício amorfo (a-Si) e o germânio amorfo (a-Ge), que podem conter elementos magnéticos além do limite de solubilidade de seus análogos cristalinos, e apresentar propriedades magnéticas notáveis. Motivado por estes fatos, este trabalho apresenta uma investigação abrangente de filmes finos de Si e Ge contendo diferentes quantidades de Mn e Co, trazendo informações úteis no entendimento das propriedades desta classe de materiais. As amostras foram preparadas por co-sputtering, e possuíram concentrações de Mn na faixa de ~ 0.1-24 at.%, e de Co na faixa de ~ 1-10 at.%. Após a deposição, os filmes foram submetidos a tratamentos térmicos cumulativos até 900 oC, e foram investigados por: espectroscopia de energia dispersiva de raios-x (EDS); espalhamento Raman; difração de raios-x; transmissão óptica; microscopias eletrônica de varredura (SEM), de força atômica (AFM) e de força magnética (MFM); magnetometria SQUID; método de van der Pauw; etc. Para fins comparativos, amostras puras também foram preparadas, tratadas e caracterizadas de forma similar. Os presentes resultados indicam que os átomos de Mn e Co foram incorporados de forma efetiva e homogênea nas matrizes amorfas. Além disso, os filmes sem tratamento (puros ou contendo impurezas) são essencialmente amorfos. Ao contrário, tratamentos em altas temperaturas induzem a cristalização das amostras, e alterações em suas demais características, dependentes da introdução de dopantes. Desta forma: suas propriedades estruturais, ópticas, morfológicas, elétricas, e magnéticas, são notadamente afetadas pela inserção de Mn e Co, e pela temperatura de tratamento térmico. Estas observações foram sistematicamente investigadas e serão apresentadas e discutidas em detalhe. / Along the last few years, the doping of semiconductors (either II-VI, IV-VI, III-V, and group-IV compounds) with magnetic species have been extensively studied due to their potential applications in spintronics. Among them, Si- and Ge-based magnetic semiconductors are very attractive because of their total compatibility with the well-established current semiconductor technology. In the crystalline form, however, these materials exhibit a low solubility limit to magnetic species and, consequently, limited magnetic activity. This is not the case for amorphous (a-)Si and a-Ge, which can contain magnetic elements beyond the solubility limit of their crystalline counterparts, and present improved magnetic properties. Motivated by these facts, this work contains a comprehensive investigation of Si and Ge thin films containing different amounts of Mn and Co, providing useful information concerning the properties of this class of materials. The samples were prepared by co-sputtering, rendering Mn concentrations in the ~ 0.1-24 at.% range, and Co contents in the ~ 1-10 at.% range. After deposition, the films were submitted to isochronal thermal annealing treatments up to 900 oC and investigated by: energy dispersive x-ray spectrometry (EDS); Raman scattering spectroscopy; x-ray diffraction; optical transmission measurements; scanning electron (SEM), atomic force (AFM) and magnetic force (MFM) microscopy techniques; SQUID magnetometry; van der Pauw technique; etc. For comparison purposes, pure samples were also prepared, annealed and characterized in a similar way. The present experimental results indicate that the Mn and Co atoms were effectively and homogenously incorporated into the amorphous hosts. Moreover, the as-deposited films (either pure or doped) are essentially amorphous. On the contrary, thermal annealing at increasing temperatures induces the crystallization of the samples, and changes in their further characteristics, that are dependent of the doping. In this way: their structural, optical, morphological, electrical, and magnetic properties, etc., are notably affected by the insertion of Mn and Co, and by the temperature of thermal annealing. These experimental observations were systematically studied and will be presented and discussed in detail.
65

Ressonância paramagnética do spin eletrônico em nitretos de carbono amorfo / Electron spin resonance on amorphous carbon nitrides

Viana, Gustavo Alexandre 14 March 2005 (has links)
Orientador: Francisco das Chagas Marques / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-04T15:07:54Z (GMT). No. of bitstreams: 1 Viana_GustavoAlexandre_M.pdf: 3366842 bytes, checksum: 8c8e197604709bdb58680d545de2f736 (MD5) Previous issue date: 2005 / Resumo: Neste projeto de tese de mestrado apresentamos os resultados de medidas de ressonância paramagnética eletrônica (RPE), realizadas em filmes de nitreto de carbono amorfo (a-C1-xNx(:H)), depositados por duas técnicas diferentes, conhecidas como: Glow Discharge (GD) e Dual Ion Beam Assisted Deposition (DIBAD). Os principais parâmetros obtidos como: A concentração de centros paramagnéticos (CCP), fator (ou valor) g e largura de linha (.Hpp), típicos para a espectroscopia de RPE, são analisados em termos das mudanças promovidas pelo nitrogênio incorporado em nossas amostras de a-C1-x Nx(:H), ao lado de resultados já publicados por outros grupos em temas próximos ao aqui desenvolvido. Diferente da tendência apresentada por outros filmes de carbono amorfo (a-C), depositados por diferentes técnicas, onde se observa que a CCP aumenta, ~10 20 cm -3 , conforme o gap óptico diminui, ~1,0 eV, este último em função da presença de clusters grafíticos maiores, nossas amostras de a-C, principalmente aquelas depositadas por DIBAD, mostram-se claramente fora deste comportamento, como será apresentado, com uma concentração de centros paramagnéticos da ordem de 10 18 cm -3 para um gap óptico de 0 eV. Atribuímos a este comportamento, uma diferenciação entre quais tipos de centros paramagnéticos (localizados ou itinerantes), em função do tamanho do gap óptico, são os responsáveis pelo sinal de RPE observado / Abstract: In this present work, measures of Electron Paramagnetic Resonance (EPR) on amorphous carbon nitride films (a-C1-x Nx(:H)), deposited by two different techniques known as Glow Discharge (GD) and Dual Ion Beam Assisted Deposition (DIBAD), will be presenting. The parameters like Paramagnetic Centers Concentration (PCC), g value and linewidth, ordinary within the EPR spectroscopy, are analyzed as the nitrogen is incorporated promoting some structural changes into the our a-C1-x Nx(:H) samples, and besides to results reporting by others groups working in subjects close to that here developed. Differently of the behavior showed by others amorphous carbon films (a-C) deposited by several different ways, where the paramagnetic centers get rise, ~10 20cm -3 , as the optical gap drops, ~ 1.0 eV, due the presence of the largest clusters of graphite sheets, our a-C samples, mainly the ones deposited by DIBAD, presenting in a straight disagree according to this trend, as it will be later explored, with a PCC around 10 18 cm -3 and a 0 eV for the optical gap. We have attributed to this behavior, a transition between localized and itinerant centers, respectably for large and small gap, whose are the responsible for the EPR signal observed. / Mestrado / Física da Matéria Condensada / Mestre em Física
66

Křemíkové sluneční články: experimentální studium a modelování základních materiálových parametrů / Silicon solar cells: methods for experimental study and evaluation of material parameters in advanced structures

Holovský, Jakub January 2012 (has links)
This work concerns with today's challenges of photoelectrical characterization methods in the research and development of thin film silicon solar cells. Relevant results are obtained only when photocurrent spectroscopy and measurement of current-voltage characteristics, are applied on the real structures that can however be multi-layered, multi-junction devices with nanostructured interfaces. Analytical and numerical optical models comprising light scattering are used for analysis of light absorption and for evaluation of optical absorption coefficient of silicon layers in sub-gap region. The slope of absorption edge and residual absorption in mid-gap indicate material disorder and defect density. Based on the investigation of electrical interaction between sub-cells in the dual-junction solar cell we developed new methods of evaluation of photocurrent spectra and current-voltage characteristics individually for each sub-cell with no need to contact them directly. Usability of Fourier Transform Photocurrent Spectroscopy as a robust method for photocurrent spectroscopy of amorphous silicon is thoroughly analyzed here. The issues of frequency dependence are addressed in detail and comparison with photothermal deflection spectroscopy is made.
67

Amorphous oxide semiconductor thin-film transistor ring oscillators and material assessment

Sundholm, Eric Steven 28 June 2010 (has links)
Amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) constitute the central theme of this thesis. Within this theme, three primary areas of focus are pursued. The first focus is the realization of a transparent three-stage ring oscillator with buffered output and an output frequency in the megahertz range. This leads to the possibility of transparent radio frequency applications, such as transparent RFID tags. At the time of its fabrication, this ring oscillator was the fastest oxide electronics ring oscillator reported, with an output frequency of 2.16 MHz, and a time delay per stage of 77 ns. The second focus is to ascertain whether a three-terminal device (i.e., a TFT) is an appropriate structure for conducting space-charge-limited-current (SCLC) measurements. It is found that it is not appropriate to use a diode-tied or gate-biased TFT configuration for conducting a SCLC assessment since square-law theory shows that transistor action alone gives rise to I proportional to V² characteristics, which can easily be mistakenly attributed to a SCLC mechanism. Instead, a floating gate TFT configuration is recommended for accomplishing SCLC assessment of AOS channel layers. The final focus of this work is to describe an assessment procedure appropriate for determining if a dielectric is suitable for use as a TFT gate insulator. This is accomplished by examining the shape of a MIM capacitor's log(J)-ξ curve, where J is the measured current density and ξ is the applied electric field. An appropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that expresses a clear breakover knee, indicating a high-field conduction mechanism dominated by Fowler-Nordheim tunneling. Such a dielectric produces a TFT with a minimal gate leakage which does not track with the drain current in a log(I[subscript D])-V[subscript GS] transfer curve. An inappropriate dielectric for use as a TFT gate insulator will have a log(J)-ξ curve that does not express a clear breakover knee, indicating that the dominate conduction mechanism is defect driven (i.e., pin-hole like shunt paths) and, therefore, the dielectric is leaky. It is shown that experimental log(J)-ξ leakage curves can be accurately simulated using Ohmic, space-charge-limited current (SCLC), and Fowler-Nordheim tunneling conduction mechanisms. / Graduation date: 2010
68

Investigations On Topological Thresholds In Metal Doped Ternary Telluride Glasses

Manikandan, N 08 1900 (has links)
The ability to tune the properties over a wide range of values by changing the additives, composition, etc., has made chalcogenide glassy semiconductors, most interesting from both fundamental physics as well as technology point of view. In particular, the occurrence of the two network topological thresholds namely the Rigidity Percolation Threshold (RPT) and the Chemical Threshold (CT) and their influence on various properties of chalcogenide glasses have been of immense interest during the last three decades. The Rigidity Percolation Threshold (also known as the Stiffness Threshold or Mechanical Threshold) corresponds to the composition at which the material transforms from a floppy polymeric glass to a rigid amorphous solid, whereas at Chemical Threshold the sample tends towards an ordered state. Though the rigidity percolation has been considered for long to occur at a critical threshold defined by the constraint’s theory, the recent theoretical and experimental investigations have found the RPT to occur over a range of compositions. In systems exhibiting an extended rigidity percolation, two distinct transitions namely from a floppy to an isostatically rigid phase and from an isostatically rigid to a stressed rigid phase are seen. In the category of chalcogenide glasses, tellurides have been found to exhibit interesting properties including the phenomenon of electrical switching which finds applications in Phase Change Memories (PCM). Studies on various thermal, electrical and photoelectrical properties of glassy tellurides help us in identifying suitable materials for different technological applications. This thesis deals with Differential Scanning Calorimetric (DSC) & Temperature Modulated Alternating Differential Scanning Calorimetric (ADSC) studies, electrical switching investigations, photoconductivity & photothermal measurements on certain metal doped telluride glasses. The composition dependence of properties such as glass transition & crystallization temperatures, switching voltage, thermal diffusivity, photosensitivity, etc., have been analyzed to obtain information about topological thresholds, thermally reversing window, etc. The first chapter of thesis provides an overview of properties of amorphous semiconductors, in particular chalcogenide glasses. The local & defect structure, the electronic band structure & electrical properties, electrical switching behavior, etc., are discussed in detail. The theoretical aspects related to the experiments undertaken in this thesis work have also been described. The instrumentation used for various experiments conducted to measure thermal, electrical, photoelectrical and photothermal properties have been discussed in chapter two. The chapter three deals with the photocurrent measurements on As40Te60-xInx (7.5 ≤ x ≤ 16.5) glasses. In these samples, it has been found that the photocurrent increases with illumination, which is understood on the basis of the large dielectric constant and also due to the presence of a large number of positively charged defect states. Further, the composition dependence of the conductivity activation energy and the photosensitivity exhibit a maximum at x = 12.5 (<r> = 2.65) and a minimum at x = 15.0 (<r> = 2.70) which has been identified to be the Rigidity Percolation Threshold (RPT) and the Chemical Threshold (CT) respectively. The results of electrical switching, DSC and Photothermal Deflection (PTD) studies on As20Te80-xGax (7.5 ≤ x ≤ 18.5) glasses, undertaken to elucidate the network topological thresholds, are described in chapter four. It has been found that all the As20Te80-xGax glasses studied exhibit memory type electrical switching. The switching voltage (VT) of these glasses increases monotonically with x, in the composition range 7.5 ≤ x ≤ 15.0. The increase in VT with gallium addition leads to a local maximum at x = 15.0 and VT decreases with x thereafter, reaching a distinct minimum at x = 17.5. Based on the variation with composition of the electrical switching voltages, the composition x = 15.0 and x = 17.5 have been identified to be the rigidity percolation and chemical thresholds of the As20Te80-xGax glassy system respectively. Further, the DSC studies indicate that As20Te80-xGax glasses exhibit a single glass transition (Tg) and two crystallization reactions (Tc1 & Tc2) upon heating. There is no appreciable change in Tg of As20Te80-xGax glasses with the addition of upto about10 atom% of Ga, whereas a continuous increase is seen in the crystallization temperature (Tc1). It is interesting to note that both Tg and Tc1 exhibit a maximum at x = 15.0 and a minimum at x = 17.5, the compositions identified to be the RPT and CT respectively by the switching experiments. The composition dependence of thermal diffusivity estimated from the PTD signal, indicate the occurrence of an extended stiffness transition in As20Te80-xGax glasses, with the compositions x = 9.0 and x = 15.0 being the onset and the completion of an extended rigidity percolation. A maximum and a minimum are seen in the thermal diffusivity respectively at these compositions. Further, a second maximum is seen in the thermal diffusivity of As20Te80-xGax glasses, the Chemical Threshold (CT) of the glassy system. The fifth chapter of the thesis describes the ADSC, electrical switching and photocurrent measurements on Ge15Te85-xInx (1 ≤ x ≤ 11) glasses. It is found there is not much change in the Tg of Ge15Te85-xInx glasses in the composition range 1 ≤ x ≤ 3. An increase is seen in Tg beyond x = 3, which continues until x = 11. Further, the composition dependence of non-reversing enthalpy shows the presence of a thermally reversing window in the compositions range x = 3 and x = 7. Electrical switching studies indicate that Ge15Te85-xInx glasses exhibit threshold type of switching at input currents below 2 mA. It is observed that switching voltages decrease initially with indium addition, exhibiting a minimum at x = 3, the onset of the extended rigidity percolation as revealed by ADSC. An increase is seen in VT above x = 3, which proceeds till x = 8, with a change in slope (lower to higher) seen around 7 atom% of indium which corresponds to the completion of the stiffness transition. The reversal in trend exhibited in the variation of VT at x = 8, leads to a well defined minimum around x = 9, the chemical threshold of the Ge15Te85-xInx glassy system. Photocurrent measurements indicate that there is no photodegradation in Ge15Te85-xInx glasses with x < 3, whereas samples with x ≥ 3 show photodegradation behavior. The composition dependent variation in the glass transition temperature has been attributed for this behavior. Further, the composition dependence of photo sensitivity has been found to show the signatures of the extended rigidity percolation and the chemical threshold in Ge15Te85-xInx glasses. The last chapter of thesis (chapter six) summarizes the results obtained and also the scope of future work to be undertaken.
69

Development Of Instrumentation For Electrical Switching Studies And Investigations On Switching And Thermal Behavior Of Certain Glassy Chalcogenides

Prashanth, S B Bhanu 04 1900 (has links)
The absence of long-range order in glassy chalcogenides provides the convenience of changing the elemental ratios and hence the properties over a wide range. The interesting properties exhibited by chalcogenide glasses make them suitable materials for Phase Change Memories (PCM) and other applications such as infrared optical devices, photo-receptors, sensors, waveguides, etc. One of the most remarkable properties of chalcogenides is their electrical switching behavior. Reversible (threshold type) or irreversible (memory type) switching from a high resistance OFF state to a low resistance ON state in glassy chalcogenides occurs at a critical voltage called the threshold/switching voltage (VT). Investigations on the switching behavior and its composition dependence throw light on the local structural effects of amorphous chalcogenide semiconductors and also help us in identifying suitable samples for PCM applications. Thermal analysis by Differential Scanning Calorimetry (DSC) has been extensively used in glass science, particularly for measurements of thermal parameters such as enthalpy of relaxation, specific heat change, etc., near glass transition. Quite recently, the conventional DSC has been sophisticated by employing a composite temperature profile for heating, resulting in the Temperature Modulated DSC (TMDSC) or Alternating DSC (ADSC). Measurements made using ADSC reveal thermal details with enhanced accuracy and resolution, and this has lead to a better understanding of the nature of glass transition. The thermal parameters obtained using DSC/ADSC are also vital for understanding the electrical switching behavior of glassy chalcogenides. The motivation of this thesis was twofold: The first was to develop a novel, high voltage programmable power supply for electrical switching analysis of samples exhibiting high VT, and second to investigate the thermal and electrical switching behavior of certain Se-Te based glasses with Ge and Sb additives. The thesis contains seven chapters: Chapter 1: This chapter provides an overview of amorphous semiconductors (a-SC) with an emphasis on preparation and properties of glassy chalcogenides. The various structural models and topological thresholds of a-SC are discussed with relations to the glass forming ability of materials. The electronic band models and defect states are also dealt with. The essentials of electrical switching behavior of chalcogenides are discussed suggesting the electronic nature of switching and the role of thermal properties on switching. Chapter 2: The second chapter essentially deals with theory and practice of the experimental techniques adopted in the thesis work. The details of the melt-quenching method of synthesizing glassy samples are provided. Considering the importance, the theory of thermal analysis by DSC & ADSC, are discussed in detail, highlighting the advantages of the latter method adopted in the thesis work. The instrumentation and electronics, developed and used for electrical switching analysis are also introduced at a block diagram level. Finally, the methods used for structural analysis are briefed. Chapter 3: This chapter is dedicated to the design and development details of the programmable High Voltage dc Power Supply (HVPS: 1750 V, 45 mA) undertaken in the thesis work. The guidelines used for power supply topology selection, the specifications and block diagram of the HVPS are provided in that sequence. The operation of the HVPS is discussed using the circuit diagram approach. The details of software control are also given. The performance validations of the HVPS, undertaken through voltage & current regulation tests, step & frequency response tests are discussed. Finally, the sample-test results on the electrical switching behavior of representative Al20As16Te64 and Ge25Te65Se10 samples, obtained using both the current & voltage sweep options of the HVPS developed are illustrated. Chapter 4: Results of the thermally induced transitions governed by structural changes which are driven by network connectivity in the GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, as revealed by ADSC experiments, are discussed in this chapter. It is found that the GexSe35-xTe65 glasses with x ≤ 20 exhibit two crystallization exotherms (Tc1 & Tc2), whereas those with x ≥ 20.5, show a single crystallization reaction upon heating (Tc). The glass transition temperature of GexSe35-xTe65 glasses is found to show a linear, but not-steep increase, indicating a progressive and not an appreciable build-up in network connectivity with Ge addition. The exothermic reaction at Tc1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at Tc2 is associated with the additional crystallization of rhombohedral Ge-Te phase. It is also found that the first crystallization temperature Tc1 of GexSe35-xTe65 glasses of lower Ge concentrations (with x ≤ 20), increases progressively with Ge content and eventually merges with Tc2 at x = 20.5 (<r> = 2.41); this behavior has been understood on the basis of the reduction in Te-Te bonds of lower energy and an increase in Ge-Te bonds of higher energy, with increasing Ge content. Chapter 5: This chapter deals with the electrical switching studies on GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, with an emphasis on the role of network connectivity/rigidity on the switching behavior. It is found that the switching voltage (VT) increases with Ge content, exhibiting a sudden jump at x=20, the Rigidity Percolation Threshold (RPT) of the system. In addition, the switching behavior changes from memory to threshold type at the RPT and the threshold switching is found to be repetitive for more than 1500 cycles. Chapter 6: In this chapter, the results of thermal analysis (by ADSC) and electrical switching investigations on SbxSe55-xTe45 (2 ≤ x ≤ 9) are discussed. It is found that the addition of trivalent Sb contributes very meagerly to network growth but directly affects the structural relaxation effects at Tg. Further, SbxSe55-xTe45 glasses exhibit memory type electrical switching, which is understood on the basis of poor thermal stability of the samples. The metallicity factor is observed to outweigh the network factor in the composition dependence of VT of SbxSe55-xTe45 glasses. Chapter 7: The chapter 7 summarizes the results obtained in the thesis work and provides the scope for future work. The references are cited in the text along with the first author’s name and year of publication, and are listed at the end of each chapter in alphabetical order.
70

Mechanical, Structural, Thermal and Electrical Studies on Indium and Silver Doped Ge-Te Glasses having Possible PCM Applications

Sreevidya Varma, G January 2014 (has links) (PDF)
The Science behind amorphous Chalcogenide materials opened up new technologies in the arena of Phase Change Memories. The Ovonic universal phase change memory is called universal because it can replace flash memory, DRAM and SRAM. These are not only basic computer memory devices but also are becoming the driving force for the ongoing revolutionary growth of cell phones and other mobile devices, which are in desperate need of memory providing higher density, faster speed and lower power consumption. In this thesis, compositional dependence of various properties of different chalcogenide glasses are investigated, to explore the possibility of their application in Phase Change Memories. Efforts are also made to understand the effect of rigidity and extended rigidity transition on the composition dependence of properties investigated. This thesis comprises of 9 chapters; a brief summary is given below. Chapter 1 deals with fundamental aspects of amorphous semiconductors with a particular reference to chalcogenide glasses. The advantages and applications of chalcogenide glasses are also described. Chapter 2 outlines preparation and characterization of the glasses investigated. The sample preparation and various experimental setup used in the present thesis work like Raman Scattering, Nanoindentation, Alternating Differential Scanning Calorimetry (ADSC), Photo-thermal Deflection Spectroscopy (PDS), Electrical Switching are summarized here. Chapter 3 deals with Micro-Raman studies in Ge15Te85-x Inx Glasses. Micro-Raman studies reveal that as-quenched Ge15Te85-xInx samples exhibit two prominent peaks, at 123 and 155 cm-1. In thermally annealed samples, the peaks at 120 cm-1 and 140 cm-1, which are due to crystalline Te, emerge as the strongest peaks. The Raman spectra of polished samples are similar to those of annealed samples, with strong peaks at 123 cm-1 and 141 cm-1. The spectra of lightly polished samples outside the thermally reversing window resemble those of thermally annealed samples; however, the spectra of glasses with compositions in the thermally reversing window resemble those of as-quenched samples. This observation confirms the earlier idea that compositions in the thermally reversing window are non-ageing and are more stable. Chapter 4 explains nanoindentation studies undertaken on Ge15Te85-xInx glasse (1 ≤ x ≤ 11). Nanoindentation studies on Ge15Te85-xInx glasses indicate that the hardness and elastic modulus of these glasses increase with indium concentration. While a pronounced plateau is seen in the elastic modulus in the composition range 3 ≤ x ≤ 7, the hardness exhibits a change in slope at compositions x = 3 and x = 7. Also, the density exhibits a broad maximum in this composition range. The observed changes in the mechanical properties and density are clearly associated with the thermally reversing window in Ge15Te85-xInx glasses in the composition range 3 ≤ x ≤ 7. In addition, a local minimum is seen in density and hardness around x = 9, the chemical threshold of the system. Chapter 5 deals with crystallization kinetics of Ge15Te85-xInx glasses. The crystallization kinetics of Ge15Te85Inx glasses have been studied by non-isothermal method. The composition dependence of Tg and Tc at different heating rates, is investigated. The activation energy of crystallization is calculated using the Kissinger’s plot. It is found that the composition dependence of the glass transition temperature, Tg and the crystallization temperature, Tc, the activation energy of crystallization, Ec, and the stability factor, (ΔT= Tc-Tg) exhibit specific signatures of intermediate phase in the composition rang 3 ≤ x ≤ 7 and Chemical Threshold at x = 9. Chapter 6 explains Alternating Differential Scanning Calorimetric and XRD studies on silver doped Ge15Te80In5 glasses. X-ray diffraction studies on quaternary Ge15Te80-xIn5Agx glasses (2 ≤ x ≤ 24) reveal the presence of Te, GeTe, Ag8GeTe6, AgTe, In2Te3 and In4Te3. Thermal studies on quaternary Ge15Te80-xIn5Agx glasses exhibit signatures of Intermediate Phase (IP) in the variation of Tg, ∆HNR and ∆Cp with Ag addition in the composition range 8 ≤ x ≤ 16. The composition x = 16 has been identified to be the Chemical Threshold (CT) based on the saturation of flexible Ag-Te bonds. Micro-Raman, molar volume, thermal diffusivity studies on Ge15Te80-xIn5Agx glasses reveal a clear evidence of intermediate phase in the composition range 8 ≤ x ≤ 16 as depicted in the ADSC studies. Chapter 7 deals with Micro-Raman studies on as-quenched Ge15Te80-xIn5Agx glasses reveal the presence of tetrahedral structural units. Further, the Raman peak positions are found to shift with silver addition. In addition, specific signatures of the Intermediate Phase (IP) are observed in the composition dependence of Raman frequencies and corresponding intensities of different modes in the composition range, 8 ≤ x ≤ 16. In thermally annealed samples, the observed Raman peaks can be attributed to crystalline tellurium and silver lattice vibrational modes; significant increase in intensity is observed at 93 and 141cm-1 with silver addition in annealed samples, suggesting an increase in silver lattice vibrational modes. Also, the compositional dependence of density, molar volume and thermal diffusivity confirms the presence of the intermediate phase. Chapter 8 contains the current-voltage characteristics and electrical switching behavior of Ge15Te80-xIn5Agx glasses. The glasses are found to exhibit memory type switching for 3mA current in the voltage range 70 -120 V, for a sample thickness 0.3 mm. But when the current is lowered to 1mA the samples exhibit threshold switching. The compositional studies indicate the presence of an intermediate phase in the composition range 8 ≤ x ≤ 16. SET-RESET studies have been carried out using a triangular pulse of 6 mA amplitude for SET and 21 mA amplitude for RESET for a sample thickness 0.3 mm. Raman studies on SET and RESET indicates SET state resemble annealed samples and RESET state resemble as-quenched samples. It is interesting to note that the samples in the intermediate phase, especially compositions at x =10, 12, 14 withstand more set-reset cycles. This indicates compositions in the intermediate phase are suitable for PCM devices. Chapter 9 summarizes the significant results obtained and explains the scope of this thesis.

Page generated in 0.1453 seconds