Spelling suggestions: "subject:"amyloïde beta"" "subject:"amyloïdes beta""
1 |
Signalisation IGF et maladie d'Alzheimer : mécanismes cellulaires et moléculaires / IGF signaling and Alzheimer's disease : cellular and molecular mechanismsGeorge, Caroline 21 September 2016 (has links)
La maladie d’Alzheimer (MA) est une neurodégénérescence liée à l’âge, caractérisée par l’agrégation intracérébrale du peptide Aβ. Plusieurs études ont montré que la signalisation insulin-like growth factor (IGF), régulateur clé de la longévité, est impliquée dans la progression de la MA. Nous avons récemment démontré que la suppression de la signalisation IGF neuronale à l’âge adulte chez un modèle de souris MA freine la progression de la pathologie amyloïde par une clairance de l’Aβ facilitée. L’objectif de ma thèse est d’identifier les mécanismes cellulaires et moléculaires liant signalisation IGF et neuroprotection contre la protéotoxicité Aβ. J’ai démontré que l’ablation de l’IGF-1R neuronal au cours du vieillissement protège des déficits cognitifs et de la neuroinflammation liée aux oligomères Aβ, et réduit substantiellement la taille du soma neuronal adulte. Pour identifier les voies impliquées dans cette neuroprotection, j’ai caractérisé le profil transcriptomique de neurones KO IGF-1R microdisséqués dans la région CA1 de l’hippocampe. J’ai démontré que la MA et l’ablation de l’IGF-1R neuronal impactent les mêmes fonctions biologiques, comme la neurotransmission, la croissance, et la transduction du signal, et presque tous les changements d’expression géniques communs à la MA et au KO IGF-1R neuronal se produisent dans le même sens. En revanche, dans les cerveaux MA, une proportion significative des gènes dérégulés par la MA sont inversés par le KO IGF-1R neuronal. Mes résultats révèlent que l’inhibition de la voie IGF neuronale à l’âge adulte protège de la pathologie Aβ en régulant l’organisation du cytosquelette, la neurotransmission, et la réponse au stress. / Alzheimer's disease (AD) is an age-related neurodegenerative disease, characterized by intracerebral amyloid-β (Aβ) peptide aggregation. Several studies have shown that insulin-like growth factor (IGF) signaling, a key regulator of longevity, is involved in AD progression. We recently showed that suppression of neuronal IGF signaling during adulthood alleviates amyloid pathology and cognitive deficits in AD mice through A clearance. In this context, the aim of my thesis was to identify the cellular and molecular mechanisms linking IGF signaling to neuronal protection against Aβ proteotoxicity. I demonstrated that ablation of neuronal IGF-1R during aging reduces cognitive deficits and neuroinflammation linked to A oligomers (AO), and induces a conspicuous decrease in neuronal soma size. To identify which pathways are involved in previously observed neuroprotection, I characterized the transcriptome profiling of microdissected hippocampal CA1 neurons from mice where neuronal IGF-1R was conditionally ablated at 3 months of age. I found that AD and neuronal IGF-1R inactivation impact on similar neuronal functions, namely neurotransmission, growth and differentiation, and signal transduction, and almost all of the changes in gene expression common to AD and IGF-1R ablation occurred in the same direction. However, in AD brains, a significant proportion of genes deregulated by AD were reversed by IGF-1R knockout. My results also reveal that inhibition of IGF signaling in adult neurons protects from A pathology by regulating cytoskeleton organization, neurotransmission, and response to stress.
|
2 |
Modulation of Alzheimer's disease amyloid beta peptide aggregation by molecular chaperones, polyphosphates and metal ions, and their interplay / Modulation de l’agrégation du peptide amyloid beta de la maladie d’alzheimer par des chaperons moléculaires, polyphosphates et ions métalliques, et leur interactionAyala Mariscal, Sara Maria 12 January 2018 (has links)
La maladie d'Alzheimer est la démence la plus répandue dans le monde. Le nombre de cas augmente de manière exponentielle et il est donc important de comprendre les mécanismes moléculaires donnant lieu à cette terrible maladie. Une des hypothèses les plus supportées est celle suggérant que la production et dégradation déséquilibrées de l'amyloïde-beta (Aß), un peptide de 42 acides aminés trouvé dans tous les individus sains, est un événement clé dans le déroulement de la maladie d'Alzheimer. En effet, une production accrue ou une dégradation faible du peptide ont pour conséquence son agrégation et accumulation dans des plaques de fibres entre les neurones des régions spécifiques du cerveau. C'est pourquoi la modulation de l'agrégation du peptide Aß est une des approches envisageables pour modifier l'évolution de la maladie d'Alzheimer. Les protéines chaperons dont une des fonctions est d'assister d'autres protéines dans leur repliement, sont parmi les molécules les plus étudiées pour leur capacité modulatrice de l'agrégation des protéines (inclus le peptide Aß). Plusieurs chaperons ont montré la capacité d'inhiber la formation des fibres par l'Aß. Cependant, du fait que les chaperons sont des molécules conservées et peu spécifiques, leur surexpression ou administration directe peut avoir des conséquences négatives si les chaperons interagissent avec des protéines autres que la protéine cible. Dans ce travail, nous nous sommes intéressés à une protéine chaperon bactérienne possédant une forte activité " holdase " (i.e., elle empêche le repliement précoce des protéines) comme possible modulateur de l'agrégation du peptide Aß. Le chaperon sauvage a une très faible capacité d'inhibition de la formation de fibres par le peptide Aß. Cependant, nous avons démontré qu'en modifiant légèrement la surface de liaison du chaperon, la protéine devient un puissant inhibiteur de l'agrégation d'Aß. En parallèle, nous nous sommes intéressés à l'influence des ions métalliques sur l'agrégation du peptide Aß. [...] / Alzheimer's disease is the most frequent type of dementia. With an exponentially growing number of cases, understanding the underlying molecular events leading to this devastating condition is of crucial importance. Much evidence points to a disequilibrium in the production and degradation of amyloid beta (Aß), a normally physiological 42 amino acid peptide, as an early key event in Alzheimer's etiology. Whether Aß is overproduced or poorly degraded, the overall result is an abnormally large pool of peptide that gradually aggregates forming extracellular deposits of fibrils, called amyloid plaques, in specific brain regions. Hence, modulation of Aß aggregation process is one of the suggested approaches to control the evolution of Alzheimer's disease. Universally conserved molecular chaperones have been intensively studied for their capacity to prevent aggregation of disease-related proteins, and many of them have proven to efficiently modulate Alzheimer's Aß aggregation. In a scenario where chaperones are overexpressed or directly administered into the affected tissue, the universal conservation and the relatively poor client-specificity of generic chaperones can become a downside because of the risk of interaction with proteins other than the targeted one is not dismissible, and thus the consequences unpredictable. In the first part of this work, we looked upon a bacterial chaperone call SecB with an unusually robust holdase activity (i.e. it prevents early protein folding) as a promising modulator of Alzheimer's Aß peptide aggregation. [...]
|
3 |
Outils microfluidiques pour la maladie d'Alzheimer: Etude de l'agrégation de l'amyloïde-BPicot, Vincent 10 December 2012 (has links) (PDF)
Le vieillissement de nos sociétés provoque une augmentation du nombre de personnes atteintes de maladies neuro-dégénératives telles que la maladie d'Alzheimer (5% des plus de 65 ans et 15% des plus de 85 ans) ou de Parkinson. Les personnes atteintes nécessitent un suivi et une prise en charge importante de la part de leurs proches ou d'organismes spécialisés. Face à ce constat, il apparaît nécessaire de mieux appréhender les mécanismes de développement de ces maladies qui sont encore méconnus, dans le but final de trouver des traitements efficaces. La maladie d'Alzheimer est caractérisée par des pertes neuronales et synaptiques dans des zones précises du cerveau ce qui induirait les troubles de la mémoire et du comportement observés chez les malades. L'une des hypothèses, pour expliquer ces lésions cérébrales, est l'agrégation d'une protéine au niveau neuronal, l'amyloïde-β. Ces agrégats vont conduire à la mort neuronale, probablement par divers mécanismes. L'agrégation de cette protéine forme des plaques séniles en surfaces des neurones, une des caractéristiques de la maladie d'Alzheimer. De nombreuses études, s'appuyant sur des méthodes classiques de la biochimie, ont permis de montrer que de multiples facteurs influaient sur le mécanisme d'agrégation (concentration en amyloïde-beta, pH, présence d'ions métalliques et autre composés, température, propriétés des surfaces). De plus, la cinétique d'agrégation est dynamique, complexe, difficilement contrôlable par les outils classiques de la biologie moléculaire. Dans ce contexte, cette thèse présente une approche originale, basée sur l'utilisation de l'outil microfluidique (manipulation de fluides au sein de systèmes microfabriqués), pour appréhender ce problème. Pour cela, nous avons développé deux types de puces microfluidiques complémentaires. La première a pour but de cribler différentes conditions réactionnelles afin de connaître les facteurs importants et les seuils de concentration critiques. Dans ce but, nous avons réalisé des systèmes permettant de réaliser des gradients de concentration linéaire, grâce auxquels nous avons essentiellement testé l'impact de la concentration en amyloïde-β sur l'agrégation. Ces expériences nous ont permis de montrer l'existence d'un seuil de concentration. La seconde approche est complémentaire de la première, elle a pour but de s'intéresser à la cinétique de réaction. Les puces sont basées sur le principe de réaction-diffusion, cela nous permet de mesurer tout d'abord le coefficient de diffusion du peptide seul (sans agrégation) puis durant l'agrégation. La comparaison des deux situations nous renseigne sur la taille des agrégats. Ces expériences nous ont permis de mesurer le coefficient de diffusion pour différentes molécules (fluorescéine, rhodamine B) et peptides modèles. Concernant l'agrégation, l'adsorption de la protéine sur les parois des canalisations limite encore l'interprétation de nos expériences préliminaires en termes de cinétique. A travers cette thèse, nous avons développé des outils microfluidiques permettant l'étude de l'agrégation de l'amyloïde-β. D'une part, nous avons réalisé un système permettant le criblage de nombreuses conditions réactionnelles qui peut être appliqué au domaine du génie chimique. D'autre part, une configuration de réaction-diffusion vise à remonter à la cinétique d'agrégation. La principale limitation actuelle des systèmes est le contrôle des conditions d'adsorption des protéines sur les parois.
|
4 |
Apolipoprotein E isoform specific differences on their tertiary structure and on their interaction with amyloid-β peptide: Structural and dynamics studies by cross-linking mass spectrometry and in silico modelingMohammadi, Azadeh 07 September 2017 (has links)
La maladie d’Alzheimer (MA) est un désordre neuro-dégénératif chronique fatal et la forme la plus répandue des démences chez l’adulte qui touchent plus de 28 millions de personnes dans le monde. En absence de traitement pour les démences neurodégénérative dont la maladie d’Alzheimer, le coût de celles-ci est estimé à 1 trillion d’USD en 2018 ce qui représente des enjeux économiques et sociétaux majeurs au niveau national et mondial. La MA est une forme d’amylose qui est caractérisée par l’agrégation du peptide amyloïde beta (Aβ) dans le cerveau des patients. Le facteur de risque génétique principal de la forme tardive (après 65 ans) de cette maladie est l’isoforme E4 de l’apolipoprotéine E (apoE) qui intervient dans le transport et le métabolisme des lipides et interagit avec le peptide Aβ. La modulation de la structure des isoformes d’apoE et de leur interaction avec l’Aβ apparaît comme une cible prometteuse dans la conception rationnelle de thérapies de la maladie. Celle-ci nécessite néanmoins une compréhension approfondie des propriétés structurales et dynamiques des deux partenaires moléculaires. Dans le cadre de cette thèse, nous avons étudié la structure de trois isoformes (E2, E3 et E4) de l’apoE par différentes techniques de biologie structurale et principalement par la réticulation chimique couplée à la spectrométrie de masse (CXMS) quantitative et par la bioinformatique structurale. Ces données complémentées par la spectroscopie infrarouge ont permis de construire des modèles structuraux de l’apoE2, E3 et E4. Nous avons mis en évidence l’interaction des domaines N- et C-terminal et la présence de multiples conformations de l’apoE chez les trois isoformes. Nos données suggèrent un équilibre entre deux principales conformations de l’apoE dont la population relative diffère entre les trois isoformes. Nous proposons les interfaces à cibler dans le cadre de thérapie visant à moduler les propriétés structurales des isoformes de l’apoE.Nous avons également mis en évidence que chaque isoforme d’apoE (E2, E3 et E4) interfère avec l’agrégation d’Aβ. Le peptide interagit avec les deux domaines N- et C- terminal de l’apoE. L’étude quantitative de l’interaction par CXMS a révélé des différences entre les cross-links formés en présence des isoformes. La modélisation du complexe apoE-Aβ a permis de mettre en évidence les interfaces impliquées dans l’interaction. Celle-ci possède une composante hydrophobe et électrostatique qui diffère chez les isoformes d’apoE. Nous proposons un mécanisme de l’interaction apoE-Aβ qui est initié par les propriétés hydrophobes des deux partenaires et qui est stabilisé par la suite via des contacts électrostatiques. Par ailleurs, une étude permettant d’explorer le potentiel de la nouvelle chimie de réticulation des résidues acides de protéine dans des applications en protéomique structurale a été effectuée. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
5 |
Etude de la structure et de la toxicité des oligomères du peptide amyloïde-beta: implication dans la maladie d'Alzheimer / Structure and toxicity of Amyloid-beta oligomers: implications in Alzheimer's diseaseSarroukh, Rabia 26 August 2011 (has links)
La maladie d’Alzheimer est actuellement la forme de démence la plus courante. Les causes, les facteurs de risques ainsi que le(s) mécanisme(s) conduisant à l’apparition des symptômes ne sont pas encore clairement connus. Néanmoins, le rôle central du peptide amyloïde (Aβ) dans le développement de la maladie a été démontré au travers de nombreuses recherches et fait actuellement l’unanimité. L’espèce oligomérique d’Aβ est plus précisément pointée doigt comme l’espèce la plus toxique. La formation des oligomers, au cours du processus d’agrégation, conduit à une population hétérogène en termes de taille et morphologies limitant la compréhension actuelle de leur implication dans le processus pathologique ainsi que dans l’initiation de la maladie. <p>Notre étude structurale minutieuse du processus d’agrégation du peptide Aβ démontre la formation d’agrégats dont le degré d’assemblage augmente au cours du temps. Nous avons montré que les agrégats identifiés comme étant des oligomères adoptent une structure en feuillets β antiparallèles. Tandis que l’interconversion de la structure β d’antiparallèle à parallèle conduit à la formation de fibrilles. Sur base de l’interprétation des spectres infrarouges analysés par corrélation à 2 dimensions, nous suggérons que ce changement de conformation est rendu possible grâce aux modifications des liens hydrogènes. En effet, les liens hydrogènes intramoléculaires qui stabilisent la structure antiparallèle des brins β disparaissent en faveur de liens intermoléculaires conduisant à la formation de feuillets β parallèles. De plus, ce changement de conformation requière la rotation des brins β le long de leur axe respectif. <p>Notre travail a pu mettre en avant le rôle central des oligomères dans la pathologie d’une part par leur rôle d’intermédiaires transitoires nécessaires et obligatoires à la formation des fibrilles mais également par la relation étroite qui existe entre leur structure en feuillets β antiparallèles et leur toxicité cellulaire. La modulation et/ou suppression de cette conformation est requise spécifiquement pour réguler leur toxicité et empêcher le processus de mauvais reploiement du peptide conduisant au développement de la maladie. <p>Enfin, nous avons également apporté de nouvelles informations concernant l’implication des membranes biologiques dans le mécanisme de toxicité des oligomères. Nos résultats démontrent que l’interaction du peptide avec un modèle de la membrane biologique ne conduit pas à la déstabilisation de cette dernière. L’hypothèse suggérant la formation de pores et/ou de canaux ioniques comme mécanisme de cytotoxicité est de facto réfutée par notre travail. Néanmoins, nous suggérons que l’interaction du peptide avec les lipides modifie le processus d’agrégation décrit dans la première partie de notre travail. Elle accélère l’étape de nucléation permettant la formation rapide d’oligomères à la surface de la membrane et accentuant ainsi leur probabilité d’interaction avec les protéines membranaires neuronales telles que les récepteurs de neurotransmetteurs./<p>Aggregation of amyloid-β peptides (Aβ1-40 and Aβ1-42) leads to formation of heterogeneous<p>toxic species, oligomers and fibrils, implicated in Alzheimer’s disease. As oligomers were<p>identified as the most cytotoxic entities, our research did focus on their implications in<p>pathology and the Aβ aggregation process which are currently not fully understood.<p>Using ATR-FTIR spectroscopy, we demonstrated that Aβ oligomers adopt an antiparallel β-<p>sheet structure. β-sheet interconversion from antiparallel to parallel seems to be an important<p>step in the Aβ oligomers-to-fibrils transformation. Furthermore, 2-D correlation analysis of<p>infrared spectra recorded during aggregation showed that Aβ isoforms undergo different β-<p>sheet reorganizations explaining their distinct aggregation kinetics. Aβ1-40 misfolding seems<p>to be related to a greater extent of secondary structure changes (increase of β-sheet structure<p>while α-helices and random coil structures content decrease). On the contrary, the same<p>analysis for Aβ1-42 suggests that a possible β-strand ‘rotation’ triggering inter-H bonding<p>formation and stabilizing fibrils may probably explain the antiparallel to parallel β-sheet<p>conversion.<p>We also provided evidence that cytotoxicity is strongly related to the oligomeric antiparallel<p>β-sheet structure of Aβ. The concomitant absence of antiparallel β-sheet structure due to<p>incubation with whey protein-derived peptide hydrolysate strongly suggests that cytotoxicity<p>and β-sheets organization are related.<p>Formation of β-barrel spanning the lipid membrane has been proposed to explain this Aβ<p>structure-toxicity relationship. In the last part of our work, we demonstrated that the<p>interaction of Aβ1-42 with anionic lipid membranes creates and/or stabilizes specific-size<p>oligomers. These oligomers, especially the dodecamer, are known to be the most toxic.<p>Nevertheless, we could not show that these specific oligomers are implicated in membrane<p>destabilization. Further works are needed to separate and study the individual properties of<p>each oligomer. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
6 |
Mise au point d’un nouveau modèle d’organoïde cérébral humain pour l’étude des mécanismes d’interaction de la protéine prion et de l’amyloïde β / Set Up of a New Human Cerebral Organoid Model to Study the Interaction Mechanisms of Prion and β Amyloid ProteinsPavoni, Serena 13 December 2017 (has links)
Les mécanismes de type prion sont désormais reconnus comme sous-tendant la plupart des maladies neurodégénératives humaines, avec en premier lieu la maladie d’Alzheimer (MA) au niveau de ses 2 marqueurs spécifiques, l’amyloïde β (Aβ à l’origine de l’hypothèse étiopathogénique de la cascade amyloïde) et la protéine Tau phosphorylée. Par ailleurs la protéine du prion (PrPC) est décrite comme interagissant à de multiples niveaux avec le métabolisme de l’Aβ sans que les mécanismes physiopathologiques sous-jacents n’aient pu être expliqués. Pour sortir de l’impasse actuelle concernant le développement d’approches thérapeutiques efficaces pour la MA, l’industrie pharmaceutique a besoin de modèles expérimentaux innovants. En effet, à ce jour aucun modèle in vivo, en dépit des progrès réalisés avec les souris transgéniques, n’arrive à refléter la complexité cérébrale humaine ni à mimer une MA clinique. Les cultures in vitro en 2D sont quant à elles très éloignées des situations conduisant à l’accumulation d’agrégats protéiques pathologiques. Le but de notre thèse a été d’utiliser dans le domaine des neurosciences les nouvelles perspectives de recherche ouvertes par les technologies des cellules souches pluripotentes induites (cellules iPS) en développant un modèle de différentiation en 3D pour obtenir des organoïdes cérébraux humains (OC) (mini cerveaux). Leur capacité d’auto-organisation en 3D de tissu neuroectodermique nous a permis de recréer un système complexe mimant différentes structures cérébrales humaines dans lesquelles nous avons pu caractériser les marqueurs attendus. L’étude de l’expression des protéines d’intérêt APP et PrPC pendant la différentiation neurale a permis de caractériser la modulation des niveaux des deux protéines en fonction du temps de culture. Afin d’orienter le modèle vers des mécanismes d’accumulation protéique de type MA, nous avons testé différents inducteurs chimiques dont l’Aftin-5 qui est capable de moduler les voies post-traductionnelles de l’APP. Plusieurs stratégies de traitement ont été adoptées pour induire le clivage de l’APP et la génération d’Aβ. La production des fragments solubles Aβ38, Aβ40, Aβ42 a été mise en évidence par ELISA. Les niveaux générés sont reproductibles et l’augmentation du ratio Aβ42/Aβ40 est cohérente avec les données extrapolées des modèles murins et humains, ce qui a permis de valider notre modèle. Les niveaux d’expression génique et protéique de PrPC et de APP suite au traitement ont été analysés afin de mieux déterminer le rôle de l’interaction entre ces deux facteurs. L’objectif à long terme consiste à améliorer ce modèle, dont les limites actuelles sont notamment l’absence de vascularisation et le niveau de maturation du tissu neural. Le défi majeur dans le cadre de la culture des OC consiste donc à favoriser l’intégration du système vasculaire, et par ailleurs à accélérer le vieillissement in vitro pour l’étude de maladies neurodégénératives. La perspective de pouvoir automatiser le système de culture des OC permet d’envisager l’utilisation de ce modèle à plus grande échelle dans le cadre de test de cytotoxicité et/ou de criblage pharmacologique à haut débit pour identifier de nouvelles molécules thérapeutiques pour la MA. / Prion-like mechanisms are known to underlie most of human neurodegenerative diseases including Alzheimer’s disease (AD), which is characterized by two important pathological markers, β amyloid (or Aβ at the origin of the etiopathogenic amyloid cascade hypothesis) and phosphorylated tau protein. Furthermore, the prion protein (PrPC) interacts at multiple levels with the metabolism of Aβ, by mechanisms which are not well understood. To overcome the current limits in the development of efficient strategies to treat AD, the pharmaceutical industry requires innovative experimental models. However, even if a lot of progress has been achieved by using transgenic mouse models, to date no in vivo model can reflect the complexity of human brain or reproduce a clinical context. 2D in vitro cell culture models are unable to allow the aggregation and accumulation of pathological proteins as observed in vivo. The aim of this study consists in taking advantage of the research prospects offered by induced pluripotent stem cell (iPSCs) in the field of neurosciences. iPSCs can be used to generate 3D models of differentiation also called human cerebral organoids or mini-brains (MBs). Their ability to self-organise in 3D neuroectodermic tissue leds to a complex system that mimics different human cerebral structures in which we were able to characterize the expected markers. The study of the two proteins of interest (APP and PrPC) during neural differentiation has allowed us to follow the modulation of protein expression level occurring during the in vitro development of the human MBs. In order to use this model to reproduce the protein accumulation mechanisms seen in AD, we have tested chemical inductors such as Aftin-5 in order to modulate the APP post-transcriptional pathway towards a pathological outcome. Many strategies of treatment are adopted to lead APP cleavage and Aβ generation. The production of soluble fragments Aβ38, Aβ40, Aβ42 in the supernatant of organoids has been showed using ELISA technique. The levels generated are reproducible and the increase of Aβ42/Aβ40 ratio is consistent with extrapolated data from mouse and human models thus validating our model. Analysis at the gene and protein level has been assessed in order to understand the interaction between PrPC and APP after treatment. The long-term goal consists in improving this model which is notably hampered by the absence of vascularization and the low level of maturation of the neural tissue. The main challenge in MB culture thus consists in the integration of the vascular system, and also in increasing the speed of ageing process in vitro for the study of neurodegenerative diseases. In the long term, the prospect of automating the culture of MBs would allow the use of the system for cytotoxicity testing and/or high throughput screening for the discovery of new drugs for AD.
|
Page generated in 0.0557 seconds