Spelling suggestions: "subject:"análise assintótica"" "subject:"aanálise assintótica""
1 |
A equação de Euler e a análise assintótica de Gevrey / Euler Equation and Gevrey Asymptotic AnalysisMax Reinhold Jahnke 04 October 2013 (has links)
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica. / In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
|
2 |
A equação de Euler e a análise assintótica de Gevrey / Euler Equation and Gevrey Asymptotic AnalysisJahnke, Max Reinhold 04 October 2013 (has links)
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica. / In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
|
3 |
Análise de Sensibilidade Topológica / Topological Sensitivity AnalysisNovotny, Antonio André 13 February 2003 (has links)
Made available in DSpace on 2015-03-04T18:50:29Z (GMT). No. of bitstreams: 1
Apresentacao.pdf: 103220 bytes, checksum: c76acce6b0debd619e9db9533aa20f11 (MD5)
Previous issue date: 2003-02-13 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / The Topological Sensitivity Analysis results in a scalar function, denoted as Topological Derivative, that supplies for each point of the domain of definition of the problem the sensitivity of a given cost function when a small hole is created. However, when a hole is introduced, it is no longer possible to stablish a homeomorphism between the domains. Due to this mathematical difficulty the Topological Derivative may become restrictive, nevertheless be extremely general. Thus, in the present work it is proposed a new method to calculte the Topological Derivative via Shape Sensitivity Analysis. This result, formally proved through a theorem, leads to a simpler and more general methodology than the others found in the literature. The Topological Sensitivity Analysis is performed for several Engineering problems, and the obtained results are used to improve the design of mechanical devices by introducing holes. The same theory developed to calculate the Topological Derivative is used to determine the sensitivity of the cost function when a small incrustation is introduced in each position of the domain, resulting in a novel concept denoted as Configurational Sensitivity Analysis, being discussed some possible applications in the context of Inverse Problems and modelling of phenomena that experiment changes in the physical properties of the medium. Thus, the methodology developed in the present work results in a framework with potential applications in Topology Optimization, Inverse Problems and Mechanical Modelling, which may be seen, from now on, not only as a method to calculate the Topological Derivative, but as a promising research area in Computational Modelling. / A análise de Sensibilidade Topológica resulta em uma função escalar, denominada Derivada Topológica, que fornece para cada ponto do domínio de definição do problema a sensibilidade de uma dada função custo quando um pequeno furo é criado. No entanto, ao introduzir um furo, não é mais possível estabelecer um homeomorfismo entre os domínios envolvidos. Devido a essa dificuldade matemática a Derivada Topológica pode se tornar restritiva, não obstante seja extremamente geral. No presente trabalho, portanto, é proposto um novo método de cálculo da Derivada Topológica via Análise de Sensibilidade à Mudança de Forma. Este resultado, formalmente demonstrado através de um teorema, conduz a uma metodologia mais simples e geral do que as demais encontradas na literatura. A Análise de Sensibilidade Topológica é então realizada em diversos problemas da Engenharia e os resultados obtidos são empregados para melhorar o projeto de componentes mecânicos mediante a introdução de furos. A mesma teoria desenvolvida para calcular a Derivada Topológica é utilizada para determinar a sensibilidade da função custo ao introduzir uma pequena incrustação numa dada posição do domínio, resultando em um novo conceito denominado Análise de Sensibilidade Configuracional, sendo discutidas suas possíveis aplicações no contexto de Problemas Inversos e de modelagem de fenômenos que experimentam mudanças nas propriedades físicas do meio. Assim, a metodologia aqui desenvolvida é uma ferramenta em potencial tanto de Otimização Topológica quanto de Problemas Inversos e de Modelagem Mecânica, podendo ser vista, a partir de agora, não somente como um método de cálculo da Derivada Topológica, mas como uma promissora área de pesquisa em Modelagem Computacional.
|
4 |
Análise de sensibilidade topológica do modelo de flexão de placas de Reissner-Mindlin / Topological sensitive analisys of the Reissner-Mindlin plate bending modelRosa, Vitor Sales Dias da 03 November 2015 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2015-11-25T12:00:01Z
No. of bitstreams: 1
Tese - Análise de Sensibilidade Topológica.pdf: 447139 bytes, checksum: d7d9c80ad59acb3e3cf12ae2d457887f (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2015-11-25T12:00:22Z (GMT) No. of bitstreams: 1
Tese - Análise de Sensibilidade Topológica.pdf: 447139 bytes, checksum: d7d9c80ad59acb3e3cf12ae2d457887f (MD5) / Made available in DSpace on 2015-11-25T12:00:35Z (GMT). No. of bitstreams: 1
Tese - Análise de Sensibilidade Topológica.pdf: 447139 bytes, checksum: d7d9c80ad59acb3e3cf12ae2d457887f (MD5)
Previous issue date: 2015-11-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) / The topological derivative concept has been proved to be useful in many relevant
applications such as topology optimization, inverse problems, image processing,
multi-scale constitutive modeling, fracture mechanics and damage evolution modeling.
The topological asymptotic analysis has been fully developed for a wide range of problems modeled by partial di erential equations. On the other hand, the topological derivatives associated with coupled problems have been derived only in their abstract forms. In this paper, therefore, we deal with the Reissner-Mindlin plate bending model, which is written in the form of a coupled system of partial di erential equations. In particular, the topological asymptotic analysis of the associated total potential energy is developed and the topological derivative with respect to the nucleation of a circular inclusion is derived in its closed form.Finally, we provide the estimates for the remainders of the topological asymptotic expansion and perform a complete mathematical justi cation for the derived
formulas. / O conceito de derivada topológica tem se mostrado útil em muitas aplicações, tais como otimização topológica, problemas inversos, processamento de imagens, modelagem constitutiva multi-escala, mecânica da fratura e modelagem da evolução de dano. A análise assintótica topológica foi amplamente desenvolvida para uma grande variedade de problemas modelados por equações diferenciais parciais. Por outro lado, a derivada topológica associada a problemas acoplados é conhecida apenas em sua forma abstrata. Neste trabalho, portanto, considera-se o modelo de flexão de placa de Reissner-Mindlin, que é escrito na forma de um sistema acoplado de equações diferenciais parciais. Em particular, a análise assintótica topológica da energia potencial total associada é desenvolvida e a derivada topológica com relação a nucleação de uma inclusão circular é obtida na sua forma fechada. Finalmente, os resíduos da expansão assintótica topológica são estimados e uma justificativa matemática completa para a derivada topológica é apresentada.
|
5 |
Um novo método de reconstrução de obstáculos / A new method for obstacles reconstructionRocha, Suelen de Souza 15 April 2016 (has links)
Submitted by Maria Cristina (library@lncc.br) on 2016-07-27T18:52:15Z
No. of bitstreams: 1
tese_Suelen.pdf: 922374 bytes, checksum: f324427616027a422decc0eaf56c7ae2 (MD5) / Approved for entry into archive by Maria Cristina (library@lncc.br) on 2016-07-27T18:52:32Z (GMT) No. of bitstreams: 1
tese_Suelen.pdf: 922374 bytes, checksum: f324427616027a422decc0eaf56c7ae2 (MD5) / Made available in DSpace on 2016-07-27T18:52:42Z (GMT). No. of bitstreams: 1
tese_Suelen.pdf: 922374 bytes, checksum: f324427616027a422decc0eaf56c7ae2 (MD5)
Previous issue date: 2016-04-15 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) / In this work a new method for obstacles reconstruction from partial boundary measurements is proposed. For a given boundary excitation, we want to determine the quantity, locations and sizes of a number of obstacles embedding whiting a geometrical domain, from partial boundary measurements related to such an excitation. This problem is written in the form of ill-posed and over-determinated partial differential equation. The idea therefore is to rewrite it as an optimization problem where a shape functional measuring the misfit between the boundary measurement and the solution to an auxiliary boundary value problem is minimized with respect to a set of ball-shaped holes. The topological derivative concept is used for solving the resulting topology optimization problem, leading to a second-order reconstruction algorithm free of initial guess. The resulting algorithm is non-iterative and thus very robust with respect to noisy data. Finally, some numerical results are presented in order to demonstrate the effectiveness of proposed reconstruction algorithm. / O objetivo deste trabalho é apresentar um novo método de reconstrução de obstáculos. Mais precisamente, dada uma excitação deseja-se obter a solução de um problema inverso de reconstrução consistindo na determinação da quantidade, localização e tamanho de obstáculos no interior de um dado domínio geométrico a partir de leituras parciais da resposta à referida excitação. Este problema é escrito na forma de uma equação diferencial parcial sobredeterminada. Essa dificuldade é contornada reescrevendo o problema inverso na forma de um problema de otimização. A ideia básica consiste em minimizar um funcional de forma que mede a diferença entre o dado lido e o calculado numericamente em relação ao próprio domínio geométrico. Em particular o conceito de derivada topológica é utilizado, o que conduz a um algoritmo de reconstrução de segunda ordem e independente de qualquer chute inicial. Como o algoritmo resultante é não-iterativo, o processo de reconstrução torna-se extremamente robusto à presença de ruído. Vários exemplos numéricos de reconstrução são apresentados donde se verifica a validade dos resultados obtidos.
|
6 |
Combinação de modelos de campos aleatórios markovianos para classificação contextual de imagens multiespectrais / Combining markov random field models for multispectral image contextual classificationLevada, Alexandre Luis Magalhães 05 May 2010 (has links)
Este projeto de doutorado apresenta uma nova abordagem MAP-MRF para a classificação contextual de imagens multiespectrais utilizando combinação de modelos de Campos Aleatórios Markovianos definidos em sistemas de ordens superiores. A modelagem estatística para o problema de classificação segue o paradigma Bayesiano, com a definição de um modelo Markoviano para os dados observados (Gaussian Markov Random Field multiespectral) e outro modelo para representar o conhecimento a priori (Potts). Nesse cenário, o parâmetro β do modelo de Potts atua como um parâmetro de regularização, tendo papel fundamental no compromisso entre as observações e o conhecimento a priori, de modo que seu correto ajuste é necessário para a obtenção de bons resultados. A introdução de sistemas de vizinhança de ordens superiores requer a definição de novos métodos para a estimação dos parâmetros dos modelos Markovianos. Uma das contribuições desse trabalho é justamente propor novas equações de pseudo-verossimilhança para a estimação desses parâmetros no modelo de Potts em sistemas de segunda e terceira ordens. Apesar da abordagem por máxima pseudo-verossimilhança ser amplamente utilizada e conhecida na literatura de campos aleatórios, pouco se conhece acerca da acurácia dessa estimação. Foram derivadas aproximações para a variância assintótica dos estimadores propostos, caracterizando-os completamente no caso limite, com o intuito de realizar inferências e análises quantitativas sobre os parâmetros dos modelos Markovianos. A partir da definição dos modelos e do conhecimento dos parâmetros, o próximo estágio é a classificação das imagens multiespectrais. A solução para esse problema de inferência Bayesiana é dada pelo critério de estimação MAP, onde a solução ótima é determinada maximizando a probabilidade a posteriori, o que define um problema de otimização. Como não há solução analítica para esse problema no caso de prioris Markovianas, algoritmos iterativos de otimização combinatória foram empregados para aproximar a solução ótima. Nesse trabalho, adotam-se três métodos sub-ótimos: Iterated Conditional Modes, Maximizer of the Posterior Marginals e Game Strategy Approach. Porém, é demonstrado na literatura que tais métodos convergem para máximos locais e não globais, pois são altamente dependentes de sua condição inicial. Isto motivou o desenvolvimento de uma nova abordagem para combinação de classificadores contextuais, que utiliza múltiplas inicializações simultâneas providas por diferentes classificadores estatísticos pontuais. A metodologia proposta define um framework MAP-MRF bastante robusto para solução de problemas inversos, pois permite a utilização e a integração de diferentes condições iniciais em aplicações como classificação, filtragem e restauração de imagens. Como medidas quantitativas de desempenho, são adotados o coeficiente Kappa de Cohen e o coeficiente Tau de Kendall para verificar a concordância entre as saídas dos classificadores e a verdade terrestre (amostras pré-rotuladas). Resultados obtidos mostram que a inclusão de sistemas de vizinhança de ordens superiores é de fato capaz de melhorar significativamente não apenas o desempenho da classificação como também a estimação dos parâmetros dos modelos Markovianos, reduzindo tanto o erro de estimação quanto a variância assintótica. Além disso, a combinação de classificadores contextuais através da utilização de múltiplas inicializações simultâneas melhora significativamente o desempenho da classificação se comparada com a abordagem tradicional com apenas uma inicialização. / This work presents a novel MAP-MRF approach for multispectral image contextual classification by combining higher-order Markov Random Field models. The statistical modeling follows the Bayesian paradigm, with the definition of a multispectral Gaussian Markov Random Field model for the observations and a Potts MRF model to represent the a priori knowledge. In this scenario, the Potts MRF model parameter (β) plays the role of a regularization parameter by controlling the tradeoff between the likelihood and the prior knowledge, in a way that a suitable tunning for this parameter is required for a good performance in contextual classification. The introduction of higher-order MRF models requires the specification of novel parameter estimation methods. One of the contributions of this work is the definition of novel pseudo-likelihood equations for the estimation of these MRF parameters in second and third order neighborhood systems. Despite its widely usage in practical MRF applications, little is known about the accuracy of maximum pseudo-likelihood approach. Approximations for the asymptotic variance of the proposed MPL estimators were derived, completely characterizing their behavior in the limiting case, allowing statistical inference and quantitative analysis. From the statistical modeling and having the model parameters estimated, the next step is the multispectral image classification. The solution for this Bayesian inference problem is given by the MAP criterion, where the optimal solution is obtained by maximizing the a posteriori distribution, defining an optimization problem. As there is no analytical solution for this problem in case of Markovian priors, combinatorial optimization algorithms are required to approximate the optimal solution. In this work, we use three suboptimal methods: Iterated Conditional Modes, Maximizer of the Posterior Marginals and Game Strategy Approach, a variant approach based on non-cooperative game theory. However, it has been shown that these methods converge to local maxima solutions, since they are extremelly dependent on the initial condition. This fact motivated the development of a novel approach for combination of contextual classifiers, by making use of multiple initializations at the same time, where each one of these initial conditions is provided by different pointwise pattern classifiers. The proposed methodology defines a robust MAP-MRF framework for the solution of general inverse problems since it allows the use and integration of several initial conditions in a variety of applications as image classification, denoising and restoration. To evaluate the performance of the classification results, two statistical measures are used to verify the agreement between the classifiers output and the ground truth: Cohens Kappa and Kendalls Tau coefficient. The obtained results show that the use of higher-order neighborhood systems is capable of significantly improve not only the classification performance, but also the MRF parameter estimation by reducing both the estimation error and the asymptotic variance. Additionally, the combination of contextual classifiers through the use of multiple initializations also improves the classificatoin performance, when compared to the traditional single initialization approach.
|
7 |
Análise de Sensibilidade Topológica / Topological Sensitivity AnalysisAntonio André Novotny 13 February 2003 (has links)
The Topological Sensitivity Analysis results in a scalar function, denoted as Topological Derivative, that supplies for each point of the domain of definition of the problem the sensitivity of a given cost function when a small hole is created. However, when a hole is introduced, it is no longer possible to stablish a homeomorphism between the domains. Due to this mathematical difficulty the Topological Derivative may become restrictive, nevertheless be extremely general. Thus, in the present work it is proposed a new method to calculte the Topological Derivative via Shape Sensitivity Analysis. This result, formally proved through a theorem, leads to a simpler and more general methodology than the others found in the literature. The Topological Sensitivity Analysis is performed for several Engineering problems, and the obtained results are used to improve the design of mechanical devices by introducing holes. The same theory developed to calculate the Topological Derivative is used to determine the sensitivity of the cost function when a small incrustation is introduced in each position of the domain, resulting in a novel concept denoted as Configurational Sensitivity Analysis, being discussed some possible applications in the context of Inverse Problems and modelling of phenomena that experiment changes in the physical properties of the medium. Thus, the methodology developed in the present work results in a framework with potential applications in Topology Optimization, Inverse Problems and Mechanical Modelling, which may be seen, from now on, not only as a method to calculate the Topological Derivative, but as a promising research area in Computational Modelling. / A análise de Sensibilidade Topológica resulta em uma função escalar, denominada Derivada Topológica, que fornece para cada ponto do domínio de definição do problema a sensibilidade de uma dada função custo quando um pequeno furo é criado. No entanto, ao introduzir um furo, não é mais possível estabelecer um homeomorfismo entre os domínios envolvidos. Devido a essa dificuldade matemática a Derivada Topológica pode se tornar restritiva, não obstante seja extremamente geral. No presente trabalho, portanto, é proposto um novo método de cálculo da Derivada Topológica via Análise de Sensibilidade à Mudança de Forma. Este resultado, formalmente demonstrado através de um teorema, conduz a uma metodologia mais simples e geral do que as demais encontradas na literatura. A Análise de Sensibilidade Topológica é então realizada em diversos problemas da Engenharia e os resultados obtidos são empregados para melhorar o projeto de componentes mecânicos mediante a introdução de furos. A mesma teoria desenvolvida para calcular a Derivada Topológica é utilizada para determinar a sensibilidade da função custo ao introduzir uma pequena incrustação numa dada posição do domínio, resultando em um novo conceito denominado Análise de Sensibilidade Configuracional, sendo discutidas suas possíveis aplicações no contexto de Problemas Inversos e de modelagem de fenômenos que experimentam mudanças nas propriedades físicas do meio. Assim, a metodologia aqui desenvolvida é uma ferramenta em potencial tanto de Otimização Topológica quanto de Problemas Inversos e de Modelagem Mecânica, podendo ser vista, a partir de agora, não somente como um método de cálculo da Derivada Topológica, mas como uma promissora área de pesquisa em Modelagem Computacional.
|
8 |
Second order topological sensitivity analysis / Análise de sensibilidade topológica de segunda ordemJairo Rocha de Faria 16 October 2008 (has links)
The topological derivative provides the sensitivity of a given shape functional with respect to an infinitesimal non-smooth domain pertubation (insertion of hole or inclusion, for instance). Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with inifinitesimal pertubations. However, for pratical applications, we need to insert pertubations of finite sizes.Therefore, we consider other terms in the expansion, leading to the concept of higher-order topological derivatives. In a particular, we observe that the topological-shape sensitivity method can be naturally extended to calculate these new terms, resulting in a systematic methodology to obtain higher-order topological derivatives. In order to present these ideas, initially we apply this technique in some problems with exact solution, where the topological asymptotic expansion is obtained until third order. Later, we calculate first as well as second order topological derivative for the total potential energy associated to the Laplace equation in two-dimensional domain pertubed with the insertion of a hole, considering homogeneous Neumann or Dirichlet boundary conditions, or an inclusion with thermal conductivity coefficient value different from the bulk material. With these results, we present some numerical experiments showing the influence of the second order topological derivative in the topological asymptotic expansion, which has two main features:it allows us to deal with pertubations of finite sizes and provides a better descent direction in optimization and reconstruction algorithms. / A derivada topológica fornece a sensibilidade de uma dada função custo quando uma pertubação não suave e infinitesimal (furo ou inclusão, por exemplo) é introduzida. Classicamente, esta derivada vem do segundo termo da expansão assintótica topológica considerando-se apenas pertubações infinitesimais. No entanto, em aplicações práticas, é necessário considerar pertubação de tamanho finito. Motivado por este fato, o presente trabalho tem como objetivo fundamental introduzir o conceito de derivadas topológicas de ordem superiores, o que permite considerar mais termos na expansão assintótica topológica.
Em particular, observa-se que o topological-shape sensitivity method pode ser naturalmente estendido para o cálculo destes novos termos, resultando em uma metodologia sistemática de análise de sensibilidade topológica de ordem superior. Para se apresentar essas idéias, inicialmente essa técnica é verificada através de alguns problemas que admitem solução exata, onde se calcula explicitamente a expansão assintótica topológica até terceira ordem. Posteriormente, considera-se a equação de Laplace bidimensional, cujo domínio é topologicamente pertubado pela introdução de um furo com condição de contorno de Neumann ou de Dirichlet homogêneas, ou ainda de uma inclusão com propriedade física distinta do meio. Nesse caso, são calculadas explicitamente as derivadas topológicas de primeira e segunda ordens. Com os resultados obtidos em todos os casos, estuda-se a influência dos termos de ordem superiores na expansão assintótica topológica, através de experimentos numéricos. Em particular, observa-se que esses novos termos, além de permitir considerar pertubações de tamanho finito, desempenham ainda um importante papel tanto como fator de correção da expansão assintótica topológica, quanto como direção de descida em processos de otimização. Finalmente, cabe mencionar que a metodologia desenvolvida neste trabalho apresenta um grande potencial para aplicação na otimização e em algoritimos de reconstrução.
|
9 |
Combinação de modelos de campos aleatórios markovianos para classificação contextual de imagens multiespectrais / Combining markov random field models for multispectral image contextual classificationAlexandre Luis Magalhães Levada 05 May 2010 (has links)
Este projeto de doutorado apresenta uma nova abordagem MAP-MRF para a classificação contextual de imagens multiespectrais utilizando combinação de modelos de Campos Aleatórios Markovianos definidos em sistemas de ordens superiores. A modelagem estatística para o problema de classificação segue o paradigma Bayesiano, com a definição de um modelo Markoviano para os dados observados (Gaussian Markov Random Field multiespectral) e outro modelo para representar o conhecimento a priori (Potts). Nesse cenário, o parâmetro β do modelo de Potts atua como um parâmetro de regularização, tendo papel fundamental no compromisso entre as observações e o conhecimento a priori, de modo que seu correto ajuste é necessário para a obtenção de bons resultados. A introdução de sistemas de vizinhança de ordens superiores requer a definição de novos métodos para a estimação dos parâmetros dos modelos Markovianos. Uma das contribuições desse trabalho é justamente propor novas equações de pseudo-verossimilhança para a estimação desses parâmetros no modelo de Potts em sistemas de segunda e terceira ordens. Apesar da abordagem por máxima pseudo-verossimilhança ser amplamente utilizada e conhecida na literatura de campos aleatórios, pouco se conhece acerca da acurácia dessa estimação. Foram derivadas aproximações para a variância assintótica dos estimadores propostos, caracterizando-os completamente no caso limite, com o intuito de realizar inferências e análises quantitativas sobre os parâmetros dos modelos Markovianos. A partir da definição dos modelos e do conhecimento dos parâmetros, o próximo estágio é a classificação das imagens multiespectrais. A solução para esse problema de inferência Bayesiana é dada pelo critério de estimação MAP, onde a solução ótima é determinada maximizando a probabilidade a posteriori, o que define um problema de otimização. Como não há solução analítica para esse problema no caso de prioris Markovianas, algoritmos iterativos de otimização combinatória foram empregados para aproximar a solução ótima. Nesse trabalho, adotam-se três métodos sub-ótimos: Iterated Conditional Modes, Maximizer of the Posterior Marginals e Game Strategy Approach. Porém, é demonstrado na literatura que tais métodos convergem para máximos locais e não globais, pois são altamente dependentes de sua condição inicial. Isto motivou o desenvolvimento de uma nova abordagem para combinação de classificadores contextuais, que utiliza múltiplas inicializações simultâneas providas por diferentes classificadores estatísticos pontuais. A metodologia proposta define um framework MAP-MRF bastante robusto para solução de problemas inversos, pois permite a utilização e a integração de diferentes condições iniciais em aplicações como classificação, filtragem e restauração de imagens. Como medidas quantitativas de desempenho, são adotados o coeficiente Kappa de Cohen e o coeficiente Tau de Kendall para verificar a concordância entre as saídas dos classificadores e a verdade terrestre (amostras pré-rotuladas). Resultados obtidos mostram que a inclusão de sistemas de vizinhança de ordens superiores é de fato capaz de melhorar significativamente não apenas o desempenho da classificação como também a estimação dos parâmetros dos modelos Markovianos, reduzindo tanto o erro de estimação quanto a variância assintótica. Além disso, a combinação de classificadores contextuais através da utilização de múltiplas inicializações simultâneas melhora significativamente o desempenho da classificação se comparada com a abordagem tradicional com apenas uma inicialização. / This work presents a novel MAP-MRF approach for multispectral image contextual classification by combining higher-order Markov Random Field models. The statistical modeling follows the Bayesian paradigm, with the definition of a multispectral Gaussian Markov Random Field model for the observations and a Potts MRF model to represent the a priori knowledge. In this scenario, the Potts MRF model parameter (β) plays the role of a regularization parameter by controlling the tradeoff between the likelihood and the prior knowledge, in a way that a suitable tunning for this parameter is required for a good performance in contextual classification. The introduction of higher-order MRF models requires the specification of novel parameter estimation methods. One of the contributions of this work is the definition of novel pseudo-likelihood equations for the estimation of these MRF parameters in second and third order neighborhood systems. Despite its widely usage in practical MRF applications, little is known about the accuracy of maximum pseudo-likelihood approach. Approximations for the asymptotic variance of the proposed MPL estimators were derived, completely characterizing their behavior in the limiting case, allowing statistical inference and quantitative analysis. From the statistical modeling and having the model parameters estimated, the next step is the multispectral image classification. The solution for this Bayesian inference problem is given by the MAP criterion, where the optimal solution is obtained by maximizing the a posteriori distribution, defining an optimization problem. As there is no analytical solution for this problem in case of Markovian priors, combinatorial optimization algorithms are required to approximate the optimal solution. In this work, we use three suboptimal methods: Iterated Conditional Modes, Maximizer of the Posterior Marginals and Game Strategy Approach, a variant approach based on non-cooperative game theory. However, it has been shown that these methods converge to local maxima solutions, since they are extremelly dependent on the initial condition. This fact motivated the development of a novel approach for combination of contextual classifiers, by making use of multiple initializations at the same time, where each one of these initial conditions is provided by different pointwise pattern classifiers. The proposed methodology defines a robust MAP-MRF framework for the solution of general inverse problems since it allows the use and integration of several initial conditions in a variety of applications as image classification, denoising and restoration. To evaluate the performance of the classification results, two statistical measures are used to verify the agreement between the classifiers output and the ground truth: Cohens Kappa and Kendalls Tau coefficient. The obtained results show that the use of higher-order neighborhood systems is capable of significantly improve not only the classification performance, but also the MRF parameter estimation by reducing both the estimation error and the asymptotic variance. Additionally, the combination of contextual classifiers through the use of multiple initializations also improves the classificatoin performance, when compared to the traditional single initialization approach.
|
10 |
Análise de sensibilidade topológica de segunda ordem / Second order topological sensitivity analysisFaria, Jairo Rocha de 16 October 2008 (has links)
Made available in DSpace on 2015-03-04T18:50:53Z (GMT). No. of bitstreams: 1
Tese Jairo.pdf: 2924101 bytes, checksum: 8a9716b369188f13960e4f2bc2fbbacb (MD5)
Previous issue date: 2008-10-16 / Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior / The topological derivative provides the sensitivity of a given shape functional with respect to an infinitesimal non-smooth domain pertubation (insertion of hole or inclusion, for instance). Classically, this derivative comes from the second term of the topological asymptotic expansion, dealing only with inifinitesimal pertubations. However, for pratical applications, we need to insert pertubations of finite sizes.Therefore, we consider other terms in the expansion, leading to the concept of higher-order topological derivatives. In a particular, we observe that the topological-shape sensitivity method can be naturally extended to calculate these new terms, resulting in a systematic methodology to obtain higher-order topological derivatives. In order to present these ideas, initially we apply this technique in some problems with exact solution, where the topological asymptotic expansion is obtained until third order. Later, we calculate first as well as second order topological derivative for the total potential energy associated to the Laplace equation in two-dimensional domain pertubed with the insertion of a hole, considering homogeneous Neumann or Dirichlet boundary conditions, or an inclusion with thermal conductivity coefficient value different from the bulk material. With these results, we present some numerical experiments showing the influence of the second order topological derivative in the topological asymptotic expansion, which has two main features:it allows us to deal with pertubations of finite sizes and provides a better descent direction in optimization and reconstruction algorithms. / A derivada topológica fornece a sensibilidade de uma dada função custo quando uma pertubação não suave e infinitesimal (furo ou inclusão, por exemplo) é introduzida. Classicamente, esta derivada vem do segundo termo da expansão assintótica topológica considerando-se apenas pertubações infinitesimais. No entanto, em aplicações práticas, é necessário considerar pertubação de tamanho finito. Motivado por este fato, o presente trabalho tem como objetivo fundamental introduzir o conceito de derivadas topológicas de ordem superiores, o que permite considerar mais termos na expansão assintótica topológica.
Em particular, observa-se que o topological-shape sensitivity method pode ser naturalmente estendido para o cálculo destes novos termos, resultando em uma metodologia sistemática de análise de sensibilidade topológica de ordem superior. Para se apresentar essas idéias, inicialmente essa técnica é verificada através de alguns problemas que admitem solução exata, onde se calcula explicitamente a expansão assintótica topológica até terceira ordem. Posteriormente, considera-se a equação de Laplace bidimensional, cujo domínio é topologicamente pertubado pela introdução de um furo com condição de contorno de Neumann ou de Dirichlet homogêneas, ou ainda de uma inclusão com propriedade física distinta do meio. Nesse caso, são calculadas explicitamente as derivadas topológicas de primeira e segunda ordens. Com os resultados obtidos em todos os casos, estuda-se a influência dos termos de ordem superiores na expansão assintótica topológica, através de experimentos numéricos. Em particular, observa-se que esses novos termos, além de permitir considerar pertubações de tamanho finito, desempenham ainda um importante papel tanto como fator de correção da expansão assintótica topológica, quanto como direção de descida em processos de otimização. Finalmente, cabe mencionar que a metodologia desenvolvida neste trabalho apresenta um grande potencial para aplicação na otimização e em algoritimos de reconstrução.
|
Page generated in 0.0668 seconds