• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hipotermia previne alterações comportamentais decorrentes da anóxia neonatal, em ratos / Hypothermia prevents neonatal anoxia-induced behavioral changes, in rats

Matsuda, Victor Daniel Vasquez 27 April 2017 (has links)
Uma das causas mais importantes de lesão encefálica em neonatos na atualidade é a anóxia neonatal. Este é um dos problemas mais graves e comuns nos serviços de perinatologia dos hospitais no mundo, sendo ainda pior em países subdesenvolvidos, devido à carência de precauções e cuidados requeridos. Há relativamente pouco tempo estudos têm indicado que a hipotermia promove um importante efeito neuroprotetor, podendo ser usada como tratamento alternativo promissor para danos causados pela anóxia neonatal. Porém, embora diversas pesquisas mostrem a ação neuroprotetora da hipotermia, não existem evidencias consistentes do seu papel preventivo em relação as alterações comportamentais decorrentes da anóxia neonatal. O objetivo deste trabalho foi avaliar se a hipotermia previne alterações comportamentais decorrentes da anóxia neonatal, incluindo funções de memória espacial, condicionamento aversivo e ansiedade. Foram incluídos no estudo 91 ratos Wistar machos organizados em 4 grupos: anóxia com hipotermia (AH), anóxia sem hipotermia (AC), controle (para anóxia) com hipotermia (CH) e controle sem hipotermia (CC). O protocolo de anóxia neonatal foi iniciado 24 horas após o nascimento dos ratos, usando uma câmara semi-hermética saturada com nitrogênio gasoso. A temperatura da câmera foi mantida a 37°C e o tempo de exposição à anóxia foi de 25 minutos. Animais controle para anóxia foram expostos à mesma câmera, exceto pelo nitrogênio que foi substituído por ar. O tratamento com hipotermia foi iniciado imediatamente após da anóxia em uma câmara a 30°C, onde os animais permaneceram durante 5 horas. O tratamento controle para hipotermia envolveu o mesmo protocolo, exceto pela temperatura da câmera que foi mantida a 37°C. No final do período, os neonatos foram colocados em uma câmara aquecida a 37°C por 40 minutos até se recuperarem. Quando os animais atingiram 70 dias de idade foram submetidos ao paradigma teste-reteste no labirinto em cruz elevado, para avaliar níveis de ansiedade, atividade locomotora e memória aversiva. Subsequentemente, quando os animais fizeram 75 dias, iniciou-se o teste de memória espacial no Labirinto Aquático de Morris. Finalmente, quando os animais atingiram 115 dias de idade, realizou-se o teste de condicionamento de medo ao som e ao contexto. A anóxia neonatal e a hipotermia não interferiram nos níveis de ansiedade no Labirinto em cruz elevado. Porém, a hipotermia aumentou a atividade locomotora e comportamentos de avaliação de risco. Os resultados obtidos no Labirinto Aquático de Morris indicam que a hipotermia previne prejuízos na memória espacial induzidos pela anóxia neonatal. Finalmente, a anóxia neonatal reduziu a taxa de extinção de memória aversivas, efeito que foi prevenido pela hipotermia. No conjunto, esses resultados mostram, por um lado, que a hipotermia previne alterações da memória espacial e de medo condicionado. Por outro lado, eles mostram que a hipotermia induz aumento da atividade locomotora e de comportamentos de avaliação de risco em ratos / Neonatal anoxia is one of the main causes of brain injury in newborns. This is among the most serious problems in many hospitals around the world and is even worse in developing countries due to the lack of required precautions and care. Recent studies have indicated that hypothermia promotes important neuroprotective effects. Thus, it could constitute a promising alternative treatment to dysfunctions caused by neonatal anoxia. Although there have been studies demonstrating that hypothermia promotes neuroprotection following neonatal anoxia, there is no solid evidence showing to which extent this neuroprotection prevents behavioral changes. This study aimed at evaluating to which extent behavioral changes induced by neonatal anoxia are prevented by hypothermia, focusing on anxiety, spatial memory and fear conditioning, in rats. The study included 91 male Wistar rats organized in 4 groups: anoxia with hypothermia (AH), anoxia without hypothermia (AC), control (for anoxia) with hypothermia (CH) and control without hypothermia (CC). Neonatal anoxia protocol started 24 hours after birth, using a semi-hermetic chamber saturated with nitrogen gas. The chamber temperature was maintained at 37°C and the time of exposure to anoxic conditions was 25 minutes. Hypothermia treatment started immediately after the anoxia protocol, within a chamber at 30°C, where the newborns remained for 5 hours. At the end of this period, newborns were transferred to a chamber at 37°C for 40 minutes until its recovery. Control treatment for anoxia involved the same protocol except for the nitrogen that was substituted for air. Control treatment for hypothermia involved to maintain the subjects in the same chamber at 37°C for 5 hours. When the animals were 70 days old, they were subjected to the elevated plus maze, in order to evaluate their anxiety, locomotor activity and aversive memory. Subsequently, when the animals were 75 days old, their spatial memory was evaluated in the Morris Water Maze. Finally, when the animals were 115 days old, they were subjected to an auditory and contextual fear conditioning task. Neonatal anoxia did not interfere with anxiety as evaluated in the elevated plus maze. In contrast, hypothermia by itself increased risk assessment behavior in the elevated plus maze. Performance in the Morris water maze task indicated that hypothermia prevents anoxia-induced disruption of spatial memory. Extinction of both auditory and contextual fear conditioning were slowed by anoxia, and this effect was prevented by hypothermia treatment. Therefore, the present experiments show that hypothermia prevents anoxia-induced (1) disruption of spatial memory and (2) slowing of extinction of fear conditioning; however, by itself, hypothermia increases risk assessment, in rats
2

Avaliação do envolvimento da leptina no desenvolvimento de camundongos leptin reporters submetidos a anóxia neonatal. / Evaluation of leptin involvement in the development of leptin reporter mice submitted to neonatal anoxia.

Carvalho, Luana Angélica Janota de 26 September 2018 (has links)
A anóxia neonatal considerada relevante condição clínica mundial e vem sendo estudada no laboratório de Neurociências, ICB-USP, desde 2008. Agressões em períodos críticos de maturação do organismo, em especial do sistema nervoso, devido à sua alta demanda metabólica, podem modificar ou mesmo comprometer eventos ontogenéticos com complicações persistentes na vida adulta, sendo relacionada a retardo cognitivo e comportamental, tais como: epilepsia, déficit de atenção, hiperatividade, problemas de aprendizado, entre outros. Em ratos adultos ocorreu morte neuronal por apoptose e necrose, decréscimo da neurogênese e do volume no hipocampo após anóxia neonatal. Experimentos comportamentais evidenciaram alterações também na capacidade de aprendizagem, navegação espacial e ansiedade. Foi observado, que esse estímulo provoca retardo no desenvolvimento sensório-motor, além de ganho de peso em relação ao controle, e aumento do diâmetro rostro-caudal e naso-anal. A fim de avaliar as causas de alterações somáticas e de desenvolvimento, decidiu-se aprofundar, neste estudo, a análise da relação do hipotálamo e da leptina com as mesmas, e com o metabolismo energético assim como, com o crescimento do organismo. Para tanto, foram utilizados camundongos leptin reporters, os quais apresentam os receptores para leptina naturalmente fluorescentes. Foi adaptado modelo para indução de anóxia em camundongos machos por meio de testes de avaliação da ontogenia de reflexos; da pressão de oxigênio no sangue; da frequência cardíaca e dos níveis na Escala de Apgar. Tais testes evidenciaram prejuízos dos animais anoxiados no aparecimento dos reflexos de aceleração, geotaxia negativa, recuperação de decúbito e resposta ao susto; diminuições significativas de pressão de oxigênio e batimentos cardíacos durante período de exposição ao ambiente anóxico, além de níveis indicativos de ausência de oxigênio quando avaliados os fatores que compõe a escala de Apgar, em relação aos animais controle, validando o modelo para este estudo. Em seguida, foram analisados grupos anóxia macho e fêmea e controle macho e fêmea com relação a parâmetros corpóreos durante 60 dias de vida dos animais. Foi evidenciado que a anóxia neonatal afeta os parâmetros de maneiras distintas, porém em todas as análises, o grupo anóxia macho apresentou dimensões aumentadas em relação aos outros grupos. Quando comparada a co-localilzação de fos com receptores de leptina fluorescentes ativados, os resultados obtidos sugerem que apesar de não ter sido detectado diferença de valores de leptina circulante no sangue, houve alteração de peso corpóreo nos animais anóxia, em relação ao seu controle, o que se atribui a possível resistência dos receptores de leptina dos núcleos arqueado e dorsomedial, hipótese que deve ser explorada em experimentos futuros. / Neonatal anoxia is considered a relevant clinical condition and has been studied in the Neuroscience Laboratory, ICB-USP, since 2008. Damage caused to an organism during its maturation, particularly the damage that affects the high-metabolic nervous system, can modify or even compromise ontogenetic events with persistant complications in adulthood. Such complications are related to cognitive and behavioral retardation, and some known examples are: epilepsy, attention deficit, hyperactivity and learning problems. In adult rats, neuronal death occurs due to apoptosis, necrosis, decreased neurogenesis and decreased volume in the hippocampus after neonatal anoxia. Behavioral experiments also revealed changes in learning ability, spatial navigation and anxiety. It was also observed that neonatal anoxia causes delay in sensorimotor development, besides weight gain in relation to the control, and increase in the rostrocaudal and naso-anal diameter. In order to evaluate the causes of such somatic and developmental changes, this study analyzed the relationship between the hypothalamus and leptin, as well as their relationship with energy metabolism and the growth of the organism. Leptin reporter mice were used, which present naturally fluorescent leptin receptors. The anoxia model was adapted for male mice by means of the following tests: evaluation of the ontogeny of reflexes, the oxygen pressure in the blood, the heart rate and the levels on the Apgar Scale. These tests revealed damages to the anoxic animals by the appearance of different reflexes: acceleration, negative geotaxis, recovery of decubitus and response to scare; there was significant decrease in oxygen pressure and heart rate during exposure to the anoxic environment, in addition to levels in the Apgar scale which are indicative of oxygen absence when contrasted with control. Male and female anoxic groups and control were analyzed with respect to body parameters for a period of 60 days, and evaluated of leptin levels, Nissl staining and c-fos cell count by stereology performed. It was verified that neonatal anoxia affected the parameters in different ways, but overall the male anoxic group presented increased dimensions in relation to the other groups. Results obtained from the co-localization of fos and activated fluorescent leptin receptors suggest that, although it is not possible to observe differences in leptin values in the blood, the change in body weight of anoxic animals was due to a lack of activation of leptin receptors in arched and dorsomedial nuclei, suggesting a resistance to the effects of this hormone, hypothesis that should be explored in future experiments.
3

Hipotermia previne alterações comportamentais decorrentes da anóxia neonatal, em ratos / Hypothermia prevents neonatal anoxia-induced behavioral changes, in rats

Victor Daniel Vasquez Matsuda 27 April 2017 (has links)
Uma das causas mais importantes de lesão encefálica em neonatos na atualidade é a anóxia neonatal. Este é um dos problemas mais graves e comuns nos serviços de perinatologia dos hospitais no mundo, sendo ainda pior em países subdesenvolvidos, devido à carência de precauções e cuidados requeridos. Há relativamente pouco tempo estudos têm indicado que a hipotermia promove um importante efeito neuroprotetor, podendo ser usada como tratamento alternativo promissor para danos causados pela anóxia neonatal. Porém, embora diversas pesquisas mostrem a ação neuroprotetora da hipotermia, não existem evidencias consistentes do seu papel preventivo em relação as alterações comportamentais decorrentes da anóxia neonatal. O objetivo deste trabalho foi avaliar se a hipotermia previne alterações comportamentais decorrentes da anóxia neonatal, incluindo funções de memória espacial, condicionamento aversivo e ansiedade. Foram incluídos no estudo 91 ratos Wistar machos organizados em 4 grupos: anóxia com hipotermia (AH), anóxia sem hipotermia (AC), controle (para anóxia) com hipotermia (CH) e controle sem hipotermia (CC). O protocolo de anóxia neonatal foi iniciado 24 horas após o nascimento dos ratos, usando uma câmara semi-hermética saturada com nitrogênio gasoso. A temperatura da câmera foi mantida a 37°C e o tempo de exposição à anóxia foi de 25 minutos. Animais controle para anóxia foram expostos à mesma câmera, exceto pelo nitrogênio que foi substituído por ar. O tratamento com hipotermia foi iniciado imediatamente após da anóxia em uma câmara a 30°C, onde os animais permaneceram durante 5 horas. O tratamento controle para hipotermia envolveu o mesmo protocolo, exceto pela temperatura da câmera que foi mantida a 37°C. No final do período, os neonatos foram colocados em uma câmara aquecida a 37°C por 40 minutos até se recuperarem. Quando os animais atingiram 70 dias de idade foram submetidos ao paradigma teste-reteste no labirinto em cruz elevado, para avaliar níveis de ansiedade, atividade locomotora e memória aversiva. Subsequentemente, quando os animais fizeram 75 dias, iniciou-se o teste de memória espacial no Labirinto Aquático de Morris. Finalmente, quando os animais atingiram 115 dias de idade, realizou-se o teste de condicionamento de medo ao som e ao contexto. A anóxia neonatal e a hipotermia não interferiram nos níveis de ansiedade no Labirinto em cruz elevado. Porém, a hipotermia aumentou a atividade locomotora e comportamentos de avaliação de risco. Os resultados obtidos no Labirinto Aquático de Morris indicam que a hipotermia previne prejuízos na memória espacial induzidos pela anóxia neonatal. Finalmente, a anóxia neonatal reduziu a taxa de extinção de memória aversivas, efeito que foi prevenido pela hipotermia. No conjunto, esses resultados mostram, por um lado, que a hipotermia previne alterações da memória espacial e de medo condicionado. Por outro lado, eles mostram que a hipotermia induz aumento da atividade locomotora e de comportamentos de avaliação de risco em ratos / Neonatal anoxia is one of the main causes of brain injury in newborns. This is among the most serious problems in many hospitals around the world and is even worse in developing countries due to the lack of required precautions and care. Recent studies have indicated that hypothermia promotes important neuroprotective effects. Thus, it could constitute a promising alternative treatment to dysfunctions caused by neonatal anoxia. Although there have been studies demonstrating that hypothermia promotes neuroprotection following neonatal anoxia, there is no solid evidence showing to which extent this neuroprotection prevents behavioral changes. This study aimed at evaluating to which extent behavioral changes induced by neonatal anoxia are prevented by hypothermia, focusing on anxiety, spatial memory and fear conditioning, in rats. The study included 91 male Wistar rats organized in 4 groups: anoxia with hypothermia (AH), anoxia without hypothermia (AC), control (for anoxia) with hypothermia (CH) and control without hypothermia (CC). Neonatal anoxia protocol started 24 hours after birth, using a semi-hermetic chamber saturated with nitrogen gas. The chamber temperature was maintained at 37°C and the time of exposure to anoxic conditions was 25 minutes. Hypothermia treatment started immediately after the anoxia protocol, within a chamber at 30°C, where the newborns remained for 5 hours. At the end of this period, newborns were transferred to a chamber at 37°C for 40 minutes until its recovery. Control treatment for anoxia involved the same protocol except for the nitrogen that was substituted for air. Control treatment for hypothermia involved to maintain the subjects in the same chamber at 37°C for 5 hours. When the animals were 70 days old, they were subjected to the elevated plus maze, in order to evaluate their anxiety, locomotor activity and aversive memory. Subsequently, when the animals were 75 days old, their spatial memory was evaluated in the Morris Water Maze. Finally, when the animals were 115 days old, they were subjected to an auditory and contextual fear conditioning task. Neonatal anoxia did not interfere with anxiety as evaluated in the elevated plus maze. In contrast, hypothermia by itself increased risk assessment behavior in the elevated plus maze. Performance in the Morris water maze task indicated that hypothermia prevents anoxia-induced disruption of spatial memory. Extinction of both auditory and contextual fear conditioning were slowed by anoxia, and this effect was prevented by hypothermia treatment. Therefore, the present experiments show that hypothermia prevents anoxia-induced (1) disruption of spatial memory and (2) slowing of extinction of fear conditioning; however, by itself, hypothermia increases risk assessment, in rats
4

Influência de gênero no desenvolvimento somático e sensório motor de ratos wistar submetidos à anóxia neonatal / Not informed by the author

Kumar, Amrita Jha 24 February 2017 (has links)
Na atualidade, uma das causas importantes de lesão encefálica em neonatos é a anóxia neonatal. Este é um problema grave nos serviços de perinatologia dos hospitais em todo o mundo sendo ainda pior em países subdesenvolvidos, devido à carência de precauções e cuidados requeridos. Modelos animais de anóxia vêm sendo empregados para avaliar seus efeitos, tanto em nível neurológico, como em nível comportamental. A anóxia neonatal tem sido estudada pelo laboratório de Neurociências do Instituto de Ciências Biomédicas da Universidade de São Paulo, com modelos de estudo já desenvolvidos, adaptados e validados. Para investigar se a anóxia neonatal afeta o desenvolvimento motor somático e sensorial, ratos foram submetidos a um modelo não invasivo de anóxia global (Takada et. al., 2011). Ratos Wistar com 30 h de idade (6-8 gramas), machos e fêmeas, foram expostos por 25 minutos a gás nitrogênio 100% num fluxo de 3L/min, pressão 101.7 kPa e temperatura de 37ºC em câmara semi-hermética de policarbonato. O grupo controle foi submetido às mesmas condições porem com o ar ambiente normal. Os animais foram avaliados durante o período de aleitamento (P2 a P21) quanto a parâmetros do desenvolvimento somático; desenvolvimento ontogenético e quanto a reflexos sensório motores. Os resultados indicaram que o grupo Anoxia macho(AM) apresentou aumento no peso corporal {AM(42.25±3.62);CM(38.76±5.60);AF(40.64±5.08);CF(41.33±5.45)}e diminuição do eixo longitudinal do corpo {AM(10.15±0.27);CM(10.39±0.50);AF(9.82±0.44);CF(10.82±0.46)} em relação ao grupo Controle macho(CM) e Anoxia fêmea(AF), AF foi menor em relacao ao Controle fêmea (CF). AM apresentou maior eixo látero-lateral do crânio em relação CM e AF {AM (3.18 ±0.10); CM (3.17 ±0.13); AF(3.06 ±0.16); CF(3.00 ±0.15)} No desenvolvimento ontogenético houve retardo na abertura do canal auditivo {AM (13.79± 0.58); CM (13.75±0.83); AF(14.21±1.01); CF(13.36±0.50)} e abertura dos olhos {AM (14.00± 0.88); CM (14.64±1.28); AF(15.14±0.86); CF(13.79±0.42)} no grupo AF em relação a CF e AM, mas no grupo AM não houve diferença significante. Na erupção dos incisivos superiores {AM (10.79± 0.43); CM(11.71±1.68); AF(11.43±0.65); CF(10.07±0.27)} o grupo AM adiantou enquanto o AF atrasou em relação ao grupo controle. A avaliação dos reflexos sensóriais mostrou que a anoxia adiantou a colocação pelas vibrissas {AM (8.80± 1.21); CM (9.50±1.56); AF (9.93±1.14); CF(10.14±1.28) no AF e AM. Apenas o AM adiantou {AM (10.93± 2.09); CM(13.43±0.94); AF(10.50±0.85); CF(9.57±0.76)} no reflexo de aversão ao precipício. Nos relfexos de geotaxia negativa {AM (14.87± 1.30); CM (13.57±2.34); AF(14.57±1.40);CF (12.00±2.11)} e sobressalto ao susto {AM (14.00±0.53); CM (13.21±1.31); AF (13.29±0.61); CF (11.93±0.27)} e preensão palmar {AM (6.60±0.83); CM (4.71±0.47); AF(10.14±0.83); CF(4.71±0.47)} a anóxia provocou atraso tanto em macho quanto em fêmeas motores. Houve atraso na ontogênese da maioria dos testes de reflexos dos filhotes do grupo Anóxia. Os resultados deste estudo demonstraram que a anóxia causa danos persistentes na maioria dos parâmetros avaliados em relação aos grupos controle, e diminuição no número de neurônios do córtex sensóriomotor {M2: AM (46.84±1.72); CM (52±1.66); AF (45.55±1.80); CF (52±1.55)M1: AM (23.70±1.33); CM (41.89±1.49); AF (25.69±0.83); CF (43.88±1.46) S1HL: AM (27.93±2.69); CM (30.19±1.31); AF(23.42±2.38); CF (38.88±1.48) S1FL: AM (31.85±1.09); CM (33.88±0.48); AF(27.66±1.36); CF(32.28±1.70)}, com diferença de gênero o que evidencia a importância de que estratégias e procedimentos para minimizar os efeitos desse estímulos sejam consideradas em relação ao gênero / At present, one of the important causes of brain injury is the neonatal anoxia. This is a serious problem in the perinatology services of hospitals around the world being even worse in underdeveloped countries because of the lack of precautions and care required. Animal models of anoxia have been employed to assess their effects, both at the neurological level and at the behavioral level. Neonatal anoxia has been studied by the Neuroscience Laboratory of the Biomedical Sciences Institute of the University of São Paulo, with animal models already developed, adapted and validated. To investigate whether neonatal anoxia affects somatic and sensory motor development, rats were subjected to a non-invasive model of global anoxia (Takada et al., 2011). Male and female 30-h old (6-8 grams) Wistar rats were exposed for 25 minutes to 100% nitrogen gas in a flow of 3 L/min, pressure 101.7 kPa and temperature of 37ºC in a semi-hermetic chamber of polycarbonate. The control group was subjected to the same conditions but with normal ambient air. The animals were evaluated during the lactation period (P2 to P21) for parameters of somatic development; Ontogenetic development and for sensorimotor reflexes. The results indicated that the male Anoxia (AM) group presented increase in body weight (AM (42.25 ± 3.62), CM (38.76 ± 5.60), FA (40.64 ± 5.08), CF (41.33 ± 5.45)) and decrease in the longitudinal (10.82 ± 0.46), in relation to the male control group (CM) and the female Anoxia (AF), AF was lower in relation to the control group (AM) (10.15 ± 0.27), CM (10.39 ± 0.50), AF (9.82 ± 0.44) Female control (CF). AM increase in the cranio-lateral axis in relation to CM and AF (AM (3.18 ± 0.10); CM (3.17 ± 0.13); AF (3.06 ± 0.16); CF (3.00 ± 0.15). Concerning the ontogenetic development there was delay in opening the (13.79 ± 0.58), and the eyes {AM (14.00 ± 0.88); CM (14.64 ± 1.28), AF (15.14 ± 0.86), CF (13.79 ± 0.42)} in the AF group in relation to CF and AM, but in the AM group there was no significant difference. In the eruption of maxillary incisors (AM (10.79 ± 0.43), CM (11.71 ± 1.68), AF (11.43 ± 0.65), CF (10.07 ± 0.27), the AM group advanced while the AF delayed in control ration. The evaluation of the sensory reflexes showed that anoxia improved the placement of vibrissae (AM (8.80 ± 1.21), CM (9.50 ± 1.56), AF (9.93 ± 1.14), CF (10.14 ± 1.28) in AF and AM. Only AM advanced (AM (10.93 ± 2.09), CM (13.43 ± 0.94), AF (10.50 ± 0.85), CF (9.57 ± 0.76) in the reflex of aversion to the precipice. In negative geotaxia relays (AM (14.87 ± 1.30); CM (13.57 ± 2.34), AF (14.57 ± 1.40), CF (12.00 ± 2.11)} and startle reflex {AM (14.00 ± 0.53); CM (13.21 ± 1.31); AF (13.29 ± 0.61); CF (11.93 ± 0.27) and palmar grip (AM (6.60 ± 0.83); CM (4.71 ± 0.47), AF (10.14 ± 0.83), CF (4.71 ± 0.47)), anoxia caused delay in both male and female groups. There was a delay in the ontogenesis of most of the reflex tests of the puppies of the anoxia group. The results of this study demonstrated that anoxia causes persistent damage in most of the parameters evaluated in relation to the control groups, and a decrease in the number of sensory motor cortex neurons (M2: AM (46.84 ± 1.72), CM (52 ± 1.66), AF 1.80), CF (52 ± 1.55) M1: AM (23.70 ± 1.33), CM (41.89 ± 1.49), AF (25.69 ± 0.83), CF (43.88 ± 1.46) S1HL: AM (27.93 ± 2.69), CM (30.19 (31.88 ± 1.48), FA (27.66 ± 1.36), CF (32.28 ± 1.70), , which shows that strategies and procedures to minimize the effects of such stimuli should be considered in relation to gender
5

Influência de gênero no desenvolvimento somático e sensório motor de ratos wistar submetidos à anóxia neonatal / Not informed by the author

Amrita Jha Kumar 24 February 2017 (has links)
Na atualidade, uma das causas importantes de lesão encefálica em neonatos é a anóxia neonatal. Este é um problema grave nos serviços de perinatologia dos hospitais em todo o mundo sendo ainda pior em países subdesenvolvidos, devido à carência de precauções e cuidados requeridos. Modelos animais de anóxia vêm sendo empregados para avaliar seus efeitos, tanto em nível neurológico, como em nível comportamental. A anóxia neonatal tem sido estudada pelo laboratório de Neurociências do Instituto de Ciências Biomédicas da Universidade de São Paulo, com modelos de estudo já desenvolvidos, adaptados e validados. Para investigar se a anóxia neonatal afeta o desenvolvimento motor somático e sensorial, ratos foram submetidos a um modelo não invasivo de anóxia global (Takada et. al., 2011). Ratos Wistar com 30 h de idade (6-8 gramas), machos e fêmeas, foram expostos por 25 minutos a gás nitrogênio 100% num fluxo de 3L/min, pressão 101.7 kPa e temperatura de 37ºC em câmara semi-hermética de policarbonato. O grupo controle foi submetido às mesmas condições porem com o ar ambiente normal. Os animais foram avaliados durante o período de aleitamento (P2 a P21) quanto a parâmetros do desenvolvimento somático; desenvolvimento ontogenético e quanto a reflexos sensório motores. Os resultados indicaram que o grupo Anoxia macho(AM) apresentou aumento no peso corporal {AM(42.25±3.62);CM(38.76±5.60);AF(40.64±5.08);CF(41.33±5.45)}e diminuição do eixo longitudinal do corpo {AM(10.15±0.27);CM(10.39±0.50);AF(9.82±0.44);CF(10.82±0.46)} em relação ao grupo Controle macho(CM) e Anoxia fêmea(AF), AF foi menor em relacao ao Controle fêmea (CF). AM apresentou maior eixo látero-lateral do crânio em relação CM e AF {AM (3.18 ±0.10); CM (3.17 ±0.13); AF(3.06 ±0.16); CF(3.00 ±0.15)} No desenvolvimento ontogenético houve retardo na abertura do canal auditivo {AM (13.79± 0.58); CM (13.75±0.83); AF(14.21±1.01); CF(13.36±0.50)} e abertura dos olhos {AM (14.00± 0.88); CM (14.64±1.28); AF(15.14±0.86); CF(13.79±0.42)} no grupo AF em relação a CF e AM, mas no grupo AM não houve diferença significante. Na erupção dos incisivos superiores {AM (10.79± 0.43); CM(11.71±1.68); AF(11.43±0.65); CF(10.07±0.27)} o grupo AM adiantou enquanto o AF atrasou em relação ao grupo controle. A avaliação dos reflexos sensóriais mostrou que a anoxia adiantou a colocação pelas vibrissas {AM (8.80± 1.21); CM (9.50±1.56); AF (9.93±1.14); CF(10.14±1.28) no AF e AM. Apenas o AM adiantou {AM (10.93± 2.09); CM(13.43±0.94); AF(10.50±0.85); CF(9.57±0.76)} no reflexo de aversão ao precipício. Nos relfexos de geotaxia negativa {AM (14.87± 1.30); CM (13.57±2.34); AF(14.57±1.40);CF (12.00±2.11)} e sobressalto ao susto {AM (14.00±0.53); CM (13.21±1.31); AF (13.29±0.61); CF (11.93±0.27)} e preensão palmar {AM (6.60±0.83); CM (4.71±0.47); AF(10.14±0.83); CF(4.71±0.47)} a anóxia provocou atraso tanto em macho quanto em fêmeas motores. Houve atraso na ontogênese da maioria dos testes de reflexos dos filhotes do grupo Anóxia. Os resultados deste estudo demonstraram que a anóxia causa danos persistentes na maioria dos parâmetros avaliados em relação aos grupos controle, e diminuição no número de neurônios do córtex sensóriomotor {M2: AM (46.84±1.72); CM (52±1.66); AF (45.55±1.80); CF (52±1.55)M1: AM (23.70±1.33); CM (41.89±1.49); AF (25.69±0.83); CF (43.88±1.46) S1HL: AM (27.93±2.69); CM (30.19±1.31); AF(23.42±2.38); CF (38.88±1.48) S1FL: AM (31.85±1.09); CM (33.88±0.48); AF(27.66±1.36); CF(32.28±1.70)}, com diferença de gênero o que evidencia a importância de que estratégias e procedimentos para minimizar os efeitos desse estímulos sejam consideradas em relação ao gênero / At present, one of the important causes of brain injury is the neonatal anoxia. This is a serious problem in the perinatology services of hospitals around the world being even worse in underdeveloped countries because of the lack of precautions and care required. Animal models of anoxia have been employed to assess their effects, both at the neurological level and at the behavioral level. Neonatal anoxia has been studied by the Neuroscience Laboratory of the Biomedical Sciences Institute of the University of São Paulo, with animal models already developed, adapted and validated. To investigate whether neonatal anoxia affects somatic and sensory motor development, rats were subjected to a non-invasive model of global anoxia (Takada et al., 2011). Male and female 30-h old (6-8 grams) Wistar rats were exposed for 25 minutes to 100% nitrogen gas in a flow of 3 L/min, pressure 101.7 kPa and temperature of 37ºC in a semi-hermetic chamber of polycarbonate. The control group was subjected to the same conditions but with normal ambient air. The animals were evaluated during the lactation period (P2 to P21) for parameters of somatic development; Ontogenetic development and for sensorimotor reflexes. The results indicated that the male Anoxia (AM) group presented increase in body weight (AM (42.25 ± 3.62), CM (38.76 ± 5.60), FA (40.64 ± 5.08), CF (41.33 ± 5.45)) and decrease in the longitudinal (10.82 ± 0.46), in relation to the male control group (CM) and the female Anoxia (AF), AF was lower in relation to the control group (AM) (10.15 ± 0.27), CM (10.39 ± 0.50), AF (9.82 ± 0.44) Female control (CF). AM increase in the cranio-lateral axis in relation to CM and AF (AM (3.18 ± 0.10); CM (3.17 ± 0.13); AF (3.06 ± 0.16); CF (3.00 ± 0.15). Concerning the ontogenetic development there was delay in opening the (13.79 ± 0.58), and the eyes {AM (14.00 ± 0.88); CM (14.64 ± 1.28), AF (15.14 ± 0.86), CF (13.79 ± 0.42)} in the AF group in relation to CF and AM, but in the AM group there was no significant difference. In the eruption of maxillary incisors (AM (10.79 ± 0.43), CM (11.71 ± 1.68), AF (11.43 ± 0.65), CF (10.07 ± 0.27), the AM group advanced while the AF delayed in control ration. The evaluation of the sensory reflexes showed that anoxia improved the placement of vibrissae (AM (8.80 ± 1.21), CM (9.50 ± 1.56), AF (9.93 ± 1.14), CF (10.14 ± 1.28) in AF and AM. Only AM advanced (AM (10.93 ± 2.09), CM (13.43 ± 0.94), AF (10.50 ± 0.85), CF (9.57 ± 0.76) in the reflex of aversion to the precipice. In negative geotaxia relays (AM (14.87 ± 1.30); CM (13.57 ± 2.34), AF (14.57 ± 1.40), CF (12.00 ± 2.11)} and startle reflex {AM (14.00 ± 0.53); CM (13.21 ± 1.31); AF (13.29 ± 0.61); CF (11.93 ± 0.27) and palmar grip (AM (6.60 ± 0.83); CM (4.71 ± 0.47), AF (10.14 ± 0.83), CF (4.71 ± 0.47)), anoxia caused delay in both male and female groups. There was a delay in the ontogenesis of most of the reflex tests of the puppies of the anoxia group. The results of this study demonstrated that anoxia causes persistent damage in most of the parameters evaluated in relation to the control groups, and a decrease in the number of sensory motor cortex neurons (M2: AM (46.84 ± 1.72), CM (52 ± 1.66), AF 1.80), CF (52 ± 1.55) M1: AM (23.70 ± 1.33), CM (41.89 ± 1.49), AF (25.69 ± 0.83), CF (43.88 ± 1.46) S1HL: AM (27.93 ± 2.69), CM (30.19 (31.88 ± 1.48), FA (27.66 ± 1.36), CF (32.28 ± 1.70), , which shows that strategies and procedures to minimize the effects of such stimuli should be considered in relation to gender

Page generated in 0.055 seconds