Spelling suggestions: "subject:"3analyse d'erreurs a priori"" "subject:"analanalyse d'erreurs a priori""
1 |
Simulation numérique des écoulements de liquides polymèresJoie, Julie 25 November 2010 (has links) (PDF)
Il existe peu de codes commerciaux pour la simulation numérique des écoulements de liquides polymères. Les difficultés proviennent des propriétés intrinsèques des polymères, qui sont des fluides viscoélastiques non-newtoniens. Ceci implique un couplage entre la viscoélasticité du liquide et l'écoulement, couplage quantifié par le nombre de Weissenberg. D'un point de vue numérique, la source du problème est la perte de convergence des algorithmes lorsque ce nombre devient trop élevé. Cette thèse porte sur le développement de schémas numériques robustes pour la simulation de ces écoulements en considérant principalement le modèle de Giesekus. Nous nous sommes d'abord intéressés au problème de Stokes et nous avons fait l'étude d'une méthode de Galerkin discontinue moins coûteuse et plus robuste que la méthode "Interior Penalty" classique. Nous avons fait une analyse a priori et a posteriori et nous avons mis en évidence les relations entre cette méthode dG et les éléments finis non-conformes. Les résultats théoriques obtenus ont été validés numériquement. Par la suite, nous avons considéré le modèle à trois champs de Giesekus. La vitesse et la pression sont approchées par éléments finis non-conformes tandis que l'équation constitutive est traitée à l'aide d'éléments finis discontinus et d'un schéma décentré de type Lesaint-Raviart. L'analyse de ces schémas dans le cas quadrangulaire et triangulaire a été faite pour le problème de Stokes sous-jacent. Ces schémas ont ensuite été implémentés dans la librairie C++ Concha. Nous avons effectué des comparaisons avec des données expérimentales mettant en évidence le bon comportement du modèle de Giesekus mais aussi avec le code commercial Polyflow et une solution semi-analytique afin de valider nos schémas numériques. Nous avons obtenu des simulations réalistes pour des nombres de Weissenberg élevés sur des cas-tests populaires : écoulement autour d'un cylindre, contractions 4:1 et 4:1:4
|
2 |
Analyse d'erreur a posteriori pour les couplages Hydro-Mécaniques et mise en œuvre dans Code AsterMeunier, Sébastien 23 November 2007 (has links) (PDF)
Le résumé contient des caractères spéciaux
|
3 |
Approximation par la méthode NXFEM des problèmes d'interface et d'interphase dans la mécanique des fluides / Approximation by NXFEM method of interphase and interface problems in fluid mechanicsEl-Otmany, Hammou 09 November 2015 (has links)
La modélisation et la simulation numérique des interfaces sont au coeur de nombreuses applications en mécanique des fluides et des solides, telles que la biologie cellulaire (déformation des globules rouges dans le sang), l'ingénierie pétrolière et la sismique (modélisation de réservoirs, présence de failles, propagation des ondes), l'aérospatiale (problème de rupture, de chocs) ou encore le génie civil. Cette thèse porte sur l'approximation des problèmes d'interface et d'interphase en mécanique des fluides par la méthode NXFEM, qui permet de prendre en compte de façon précise une discontinuité non alignée avec le maillage. Nous nous sommes d'abord intéressés au développement de la méthode NXFEM pour des éléments finis non-conformes pour prendre en compte une interface séparant deux milieux. Nous avons proposé deux approches pour les équations de Darcy et de Stokes. La première consiste à modifier les fonctions de base de Crouzeix-Raviart sur les cellules coupées et la deuxième consiste à rajouter des termes de stabilisation sur les arêtes coupées. Les résultats théoriques obtenus ont été ensuite validés numériquement. Par la suite, nous avons étudié la modélisation asymptotique et l'approximation numérique des problèmes d'interphase, faisant apparaître une couche mince. Nous avons considéré d'abord les équations de Darcy en présence d'une faille et, en passant à la limite dans la formulation faible, nous avons obtenu un modèle asymptotique où la faille est décrite par une interface, avec des conditions de transmission adéquates. Pour ce problème limite, nous avons développé une méthode numérique basée sur NXFEM avec éléments finis conformes, consistante et stable. Des tests numériques, incluant une comparaison avec la littérature, ont été réalisés. La modélisation asymptotique a été étendue aux équations de Stokes, pour lesquelles nous avons justifié le modèle limite obtenu. Enfin, nous nous sommes intéressés à la modélisation de la membrane d'un globule rouge par un fluide non-newtonien viscoélastique de Giesekus, afin d'appréhender la rhéologie du sang. Pour un problème d'interphase composé de deux fluides newtoniens (l'extérieur et l'intérieur du globule) et d'un liquide de Giesekus (la membrane du globule), nous avons dérivé formellement le problème limite, dans lequel les équations dans la membrane sont remplacées par des conditions de transmission sur une interface. / Numerical modelling and simulation of interfaces in fluid and solid mechanics are at the heart of many applications, such as cell biology (deformation of red blood cells), petroleum engineering and seismic (reservoir modelling, presence of faults, wave propagation), aerospace and civil engineering etc. This thesis focuses on the approximation of interface and interphase problems in fluid mechanics by means of the NXFEM method, which takes into account discontinuities on non-aligned meshes.We have first focused on the development of NXFEM for nonconforming finite elements in order to take into account the interface between two media. Two approaches have been proposed, for Darcy and Stokes equations. The first approach consists in modifying the basis functions of Crouzeix-Raviart on the cut cells and the second approach consists in adding some stabilization terms on each part of a cut edge. We have studied them from a theoretical and a numerical point of view. Then we have studied the asymptotic modelling and numerical approximation of interphase problems, involving a thin layer between two media. We have first considered the Darcy equations in the presence of a highly permeable fracture. By passing to the limit in the weak formulation, we have obtained an asymptotic model where the 2D fracture is described by an interface with adequate transmission conditions. A numerical method based on NXFEM with conforming finite elements has been developed for this limit problem, and its consistency and uniform stability have been proved. Numerical tests including a comparison with the literature have been presented. The asymptotic modelling has been finally extended to Stokes equations, for which we have justified the limit problem. Finally, we have considered the mechanical behaviour of red blood cells in order to better understand blood rheology. The last part of the thesis is devoted to the modelling of the membrane of a red blood cell by a non-Newtonian viscoelastic liquid, described by the Giesekus model. For an interphase problem composed of two Newtonian fluids (the exterior and the interior of the red blood cell) and a Giesekus liquid (the membrane), we formally derived the limit problem where the equations in the membrane are replaced by transmission conditions on an interface.
|
4 |
Analyse de méthodes mixtes d'éléments finis en mécaniqueCapatina, Daniela 02 November 2011 (has links) (PDF)
Les travaux de recherche de cette habilitation se situent dans le domaine de l'Analyse Numérique des Equations aux Dérivées Partielles et portent sur la modélisation, la discrétisation, l'analyse a priori et a posteriori de schémas et la simulation numérique de différents problèmes issus de la mécanique. Un fil conducteur de ces travaux est l'utilisation et l'étude des méthodes d'éléments finis (conformes, non-conformes, mixtes, de Galerkin discontinus, stabilisés) et des formulations mixtes. Les domaines d'application abordés sont la mécanique des solides élastiques, l'ingénierie pétrolière et la mécanique des fluides, newtoniens et non-newtoniens. Ainsi, des problèmes d'élasticité linéaire, comme la discrétisation de deux modèles de plaque mince en flexion munie de conditions aux limites physiques, ont été considérés. Des écoulements anisothermes dans les milieux poreux, décrits par les équations de Darcy-Forchheimer avec un bilan d'énergie exhaustif dans les cas mono et multi-phasique, ainsi qu'un couplage thermo-mécanique puits - réservoir pétrolier ont aussi été étudiés, dans le cadre d'une collaboration industrielle avec Total. Enfin, plusieurs questions en mécanique des fluides ont été abordées, comme la discrétisation robuste des équations de Stokes par une méthode de Galerkin discontinue en lien avec les éléments finis non-conformes, le traitement des conditions aux limites non-standard pour les équations de Navier-Stokes, la modélisation hiérarchique multi-dimensionnelle des écoulements fluviaux à surface libre, la simulation réaliste des écoulements de liquides polymères et la stabilité des schémas numériques par rapport aux paramètres physiques, en particulier pour le modèle de Giesekus.
|
Page generated in 0.0869 seconds