Spelling suggestions: "subject:"angiospermen"" "subject:"angiospermes""
1 |
Evolution of the genus Aristolochia (Aristolochiaceae) in the Eastern Mediterranean including the Near East and CaucasiaMahfoud, Hafez M. 19 February 2010 (has links) (PDF)
The Aristolochiaceae are one of the largest angiosperm families, the family has been divided into two subfamilies: Asaroideae, which include Asarum and Saruma, and Aristolochioideae, which includes Thottea sensu lato and Aristolochia sensu lato (Kelly and Gonzales, 2003). Aristolochia sensu lato comprise between 450 and 600 species, distributed throughout the world with centers of diversities in the tropical and subtropical regions (Neinhuis et al., 2005, Wanke et al., 2006a, 2007).
However, the extended Mediterranean region including Turkey, the Caucasus and the Near East is likely to be the only diversity hotspot of the genus Aristolochia in the northern hemisphere were up to 60 species and subspecies could be observed (Wanke 2007). Most important contributions to the knowledge of these species were published by Nardi (1984, 1988, 1991, 1993) and Davis & Khan (1961, 1964, 1982), all of these studies were based on morphological characters only. In recent years, with the progress of molecular techniques and in light of the systematic chaos, a detailed study was needed to unravel the evolutionary history prior to a taxonomic revision of this group. The first chapter of my thesis should be regarded as the starting point for more detailed investigation on population level.
Preliminary molecular phylogenitic analysis recovered the Mediterranean Aristolochia species as monophyletic (de Groot et al 2006). However, only very few members were included in that study. The latest phylogenetic study by Wanke (2007) dealed with west Mediterranean Aristolochia species and sampled also few members belonging to the east Mediterranean and Caucasian species (3 from Greece, 2 from Georgia and 1 from Turkey). This study reported the Mediterranean Aristolochia species as two molecular and morphologically well supported clades, which were sister to each other. Furthermore, the two closely related species A. sempervirens and A. baetica which have an east west vicariance and are known as Aristolochia sempervirens complex has been recovered as sister group to the remaining west Mediterranean species. A detailed investigation of the evolutionary history of this group is the topic of the second chapter of my thesis (Chapter 2). The Aristolochia sempervirens complex is characterized by an unusual growth form and has a circum Mediterranean distribution. The investigation of these species complex seem to be of great importance to understand speciation and colonization of the Mediterranean by the genus Aristolochia and might shade light in historical evolutionary processes of other plant lineages in the Mediterranean. Furthermore, I test applicability and phylogenetic power of a nuclear single copy gene (nSCG) region to reconstruct well resolved and highly supported gene genealogies as a prerequisite to study evolutionary biology questions in general.
Furthermore, a comprehensive overview of leaf epicuticular waxes, hairs and trichomes of 54 species from the old and new world taxa of the genus Aristolochia were investigated using scanning electron microscopy (SEM) to clarify taxonomic status of theses species in contrast to their molecular position. Also this study which is the third chapter of this thesis (Chapter 3), has a strong focus on Mediterranean Aristolochia and tries to provide additional support for molecular findings based on epicuticular waxes and to test them as synapomorphies.
Each chapter has its own introduction and abstract resulting in a short general introduction here.
|
2 |
Evolution of the genus Aristolochia (Aristolochiaceae) in the Eastern Mediterranean including the Near East and CaucasiaMahfoud, Hafez M. 09 February 2010 (has links)
The Aristolochiaceae are one of the largest angiosperm families, the family has been divided into two subfamilies: Asaroideae, which include Asarum and Saruma, and Aristolochioideae, which includes Thottea sensu lato and Aristolochia sensu lato (Kelly and Gonzales, 2003). Aristolochia sensu lato comprise between 450 and 600 species, distributed throughout the world with centers of diversities in the tropical and subtropical regions (Neinhuis et al., 2005, Wanke et al., 2006a, 2007).
However, the extended Mediterranean region including Turkey, the Caucasus and the Near East is likely to be the only diversity hotspot of the genus Aristolochia in the northern hemisphere were up to 60 species and subspecies could be observed (Wanke 2007). Most important contributions to the knowledge of these species were published by Nardi (1984, 1988, 1991, 1993) and Davis & Khan (1961, 1964, 1982), all of these studies were based on morphological characters only. In recent years, with the progress of molecular techniques and in light of the systematic chaos, a detailed study was needed to unravel the evolutionary history prior to a taxonomic revision of this group. The first chapter of my thesis should be regarded as the starting point for more detailed investigation on population level.
Preliminary molecular phylogenitic analysis recovered the Mediterranean Aristolochia species as monophyletic (de Groot et al 2006). However, only very few members were included in that study. The latest phylogenetic study by Wanke (2007) dealed with west Mediterranean Aristolochia species and sampled also few members belonging to the east Mediterranean and Caucasian species (3 from Greece, 2 from Georgia and 1 from Turkey). This study reported the Mediterranean Aristolochia species as two molecular and morphologically well supported clades, which were sister to each other. Furthermore, the two closely related species A. sempervirens and A. baetica which have an east west vicariance and are known as Aristolochia sempervirens complex has been recovered as sister group to the remaining west Mediterranean species. A detailed investigation of the evolutionary history of this group is the topic of the second chapter of my thesis (Chapter 2). The Aristolochia sempervirens complex is characterized by an unusual growth form and has a circum Mediterranean distribution. The investigation of these species complex seem to be of great importance to understand speciation and colonization of the Mediterranean by the genus Aristolochia and might shade light in historical evolutionary processes of other plant lineages in the Mediterranean. Furthermore, I test applicability and phylogenetic power of a nuclear single copy gene (nSCG) region to reconstruct well resolved and highly supported gene genealogies as a prerequisite to study evolutionary biology questions in general.
Furthermore, a comprehensive overview of leaf epicuticular waxes, hairs and trichomes of 54 species from the old and new world taxa of the genus Aristolochia were investigated using scanning electron microscopy (SEM) to clarify taxonomic status of theses species in contrast to their molecular position. Also this study which is the third chapter of this thesis (Chapter 3), has a strong focus on Mediterranean Aristolochia and tries to provide additional support for molecular findings based on epicuticular waxes and to test them as synapomorphies.
Each chapter has its own introduction and abstract resulting in a short general introduction here.
|
3 |
Mutational dynamics and phylogenetic utility of plastid introns and spacers in early branching eudicotsBarniske, Anna-Magdalena 22 January 2010 (has links) (PDF)
Major progress has been made during the last twenty years towards a better understanding of the evolution of angiosperms. Early molecular-phylogenetic analyses revealed three major groups, with eudicots as well as monocots being monophyletic, arisen from a paraphyletic group of dicotyledonous angiosperms (= basal angiosperms). Consistently, numerous phylogenetic studies based on sequence data have recovered the eudicot-clade and increased confidence in its existence. Furthermore this clade, which contains about 75% of angiosperm species diversity, is characterized by the possession of tricolpate and tricolpate-derived pollen and has thus also been called the tricolpate clade. Based on molecular-phylogenetic investigations several lineages, such as Ranunculales, Proteales (= Proteaceae, Nelumbonaceae, Platanaceae), Sabiaceae, Buxaceae plus Didymelaceae, and Trochodendraceae plus Tetracentraceae were shown as belonging to a early-diverging grade (early-diverging or “basal” eudicots), while larger groups like asterids, Caryophyllales, rosids, Santalales, and Saxifragales were identified as being members of a highly supported core clade, the so called “core eudicots”. Nevertheless, phylogenetic relationships among several lineages of the eudicots remained difficult to resolve. This thesis is mainly concentrated on fully resolving the branching order among the different clades of the early-diverging eudicots as well as on clarifying phylogenetic and systematic conditions within several lineages, based on phylogenetic reconstructions using sequence data of rapidly-evolving and non-coding molecular regions, such as spacers and introns. Commonly, fast-evolving and non-coding DNA was used to infer relationships among species and genera, as practised in chapter 3, due to the assumption of being inapplicable caused by putative high levels of homoplasy through multiple substitutions and frequent microstructural changes resulting in non-alignability. However, during the last few years numerous molecular-phylogenetic studies were able to present well resolved angiosperm trees on the basis of rapidly-evolving and non-coding regions from the large single copy region of the chloroplast genome comparable to multi-gene analyses concerning topology and statistical support. Mutational dynamics in spacers and introns was revealed to follow complex patterns related to structural constraints like the introns secondary structure. Therefore extreme sequence variability was always confirmed to mutational hotspots that could be excluded from calculations. Moreover it became clear that combining these non-coding regions with the fast-evolving matK gene can lead to further resolved and statistical supported trees.
Chapter 1 deals with the placement of Sabiales inside the early-diverging eudicot grade, while investigating mutational dynamics as well as the utility of different kinds of non-coding and rapidly-evolving DNA within deep-level phylogenetics. It was done by analyzing a combination of nine regions from the large single copy region of the chloroplast genome, including spacers, the sole group I intron, three group II introns and the coding matK for a sampling of 56 taxa. The presented topology is in mainly congruence with the hypothesis on phylogenetic relationships among early-branching eudicots that was gained through the application of a reduced set of five non-coding and fast-evolving molecular markers, including the plastid petD (petB-petD spacer, petD group II intron) plus the trnL-F (trnL group I intron, trnL-F spacer) region and the matK gene. It showed a grade of Ranunculales, Sabiales, Proteales, Trochodendrales and Buxales. The current study differs in showing Sabiales as sister to Proteales in all phylogenetic analyses, in contrast to a second-branching inside early-diverging eudicots and a Bayesian tree displaying Sabiales branching after Proteales. All three hypotheses were tested concerning their likelihood. None of them was shown as being significantly declinable. Thus, albeit the number of characters and informative sites was doubled in comparision to the five-region investigation, the exact position of the Sabiales remained to be resolved with confidence. However, the advanced analyses of the phylogenetic structure of the three different non-coding partitions in comparison to coding genes resulted in the recognition of a significantly higher mean phylogenetic signal per informative character within spacers and introns than in the frequently applied slowly-evolving rbcL gene. The fast-evolving and well performing matK gene is shown to be nested within the non-coding partitions in this respect. Interestingly, the least constrained spacers displayed considerably less phylogenetic structure than both, the group I intron and the group II introns. Molecular evolution is again shown to follow certain patterns in angiosperms, as indicated by the occurrence of mutational hotspots and their connection to structural and functional constraints. This is especially shown for the group II introns studied where highly dynamic sequence parts were rather found in loops than stems.
The aim of chapter 2 was to present a comprehensive reconstruction of the phylogenetic relationships inside the order of Ranunculales, the first-branching clade of the early-diverging eudicots, with an emphasis on the evolution of growth forms within the group. Currently, the order comprises seven families (Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae – not included due to lacking plant material, Eupteleaceae, Papaveraceae) containing predominantly herbaceous groups as well as trees and lianescent/shrubby forms. A surprising result that emerged due to the increased use of molecular data within systematics during the last twenty years is the inclusion of the woody Eupteleaceae into Ranunculales. Because of its adaptation to wind pollination it was previously placed next to Hamamelididea. Although phylogenetic hypotheses agreed in the exclusion of Eupteleaceae and the predominantly herbaceous Papaveraceae from a core clade the branching order within early-diverging Ranunculales remained a question to be answered. Thus phylogenetic reconstructions based on molecular data of 50 taxa (including outgroup), applying the well-performing non-coding petD and trnL-F as well as the trnK/matK-psbA region including the coding matK, were carried out. The comprehensive sampling resulted in fully resolved and highly supported phylogenies in both, maximum parsimony and model based approaches, with family relations within the core clade being identical and Euptelea appearing as first branching lineage. However, the relationships among the early-diverging Ranunculales could not be resolved with confidence, a result in line with the finding made in chapter 1. The topology was further resolved as Lardizabalaceae being sister to the remaining members of the order, followed by Menispermaceae, Berberidaceae and Ranunculaceae, the latter sharing a sistergroup relationship. Inside the mainly lianescent Lardizabalaceae the shrubby Decaisnea was clearly depicted as first-branching. The systematic controversial Glaucidium and Hydrastis are shown to be early-diverging members of the Ranunculaceae.
A central goal of chapter 3 was to test phylogenetic relationships among the members of the ranunculaceous tribe Anemoneae. Currently it consists of the subtribes Anemoninae including Anemone, Hepatica, Pulsatilla and Knowltonia, and Clematidinae, consisting of Archiclematis, Clematis and Naravelia. Furthermore the position and taxonomic rank of several lineages inside the subtribe Anemoninae were examined. Since recent comprehensive molecular-phylogenetic investigations have been carried out for the members of Clematidinae or Anemoninae, 63 species representing all major lineages of the two subtribes were included into analyses. Calculations were carried out on the basis of molecular data of the nuclear ribosomal ITS1&2 and the plastid atpB-rbcL intergenic spacer region. Phylogenetic reconstructions resulted in the recognition of two distinct clades within the tribe, thus corroborating the formation of the two subtribes. Within the subtribe Anemoninae the traditional genera Knowltonia, Pulsatilla and Hepatica are confidently shown to be nested within the genus Anemone. The preliminary classification of the genus, currently consisting of the two subgenera Anemone and Anemonidium, is complemented by the subgenus Hepatica.
|
4 |
Mutational dynamics and phylogenetic utility of plastid introns and spacers in early branching eudicotsBarniske, Anna-Magdalena 16 December 2009 (has links)
Major progress has been made during the last twenty years towards a better understanding of the evolution of angiosperms. Early molecular-phylogenetic analyses revealed three major groups, with eudicots as well as monocots being monophyletic, arisen from a paraphyletic group of dicotyledonous angiosperms (= basal angiosperms). Consistently, numerous phylogenetic studies based on sequence data have recovered the eudicot-clade and increased confidence in its existence. Furthermore this clade, which contains about 75% of angiosperm species diversity, is characterized by the possession of tricolpate and tricolpate-derived pollen and has thus also been called the tricolpate clade. Based on molecular-phylogenetic investigations several lineages, such as Ranunculales, Proteales (= Proteaceae, Nelumbonaceae, Platanaceae), Sabiaceae, Buxaceae plus Didymelaceae, and Trochodendraceae plus Tetracentraceae were shown as belonging to a early-diverging grade (early-diverging or “basal” eudicots), while larger groups like asterids, Caryophyllales, rosids, Santalales, and Saxifragales were identified as being members of a highly supported core clade, the so called “core eudicots”. Nevertheless, phylogenetic relationships among several lineages of the eudicots remained difficult to resolve. This thesis is mainly concentrated on fully resolving the branching order among the different clades of the early-diverging eudicots as well as on clarifying phylogenetic and systematic conditions within several lineages, based on phylogenetic reconstructions using sequence data of rapidly-evolving and non-coding molecular regions, such as spacers and introns. Commonly, fast-evolving and non-coding DNA was used to infer relationships among species and genera, as practised in chapter 3, due to the assumption of being inapplicable caused by putative high levels of homoplasy through multiple substitutions and frequent microstructural changes resulting in non-alignability. However, during the last few years numerous molecular-phylogenetic studies were able to present well resolved angiosperm trees on the basis of rapidly-evolving and non-coding regions from the large single copy region of the chloroplast genome comparable to multi-gene analyses concerning topology and statistical support. Mutational dynamics in spacers and introns was revealed to follow complex patterns related to structural constraints like the introns secondary structure. Therefore extreme sequence variability was always confirmed to mutational hotspots that could be excluded from calculations. Moreover it became clear that combining these non-coding regions with the fast-evolving matK gene can lead to further resolved and statistical supported trees.
Chapter 1 deals with the placement of Sabiales inside the early-diverging eudicot grade, while investigating mutational dynamics as well as the utility of different kinds of non-coding and rapidly-evolving DNA within deep-level phylogenetics. It was done by analyzing a combination of nine regions from the large single copy region of the chloroplast genome, including spacers, the sole group I intron, three group II introns and the coding matK for a sampling of 56 taxa. The presented topology is in mainly congruence with the hypothesis on phylogenetic relationships among early-branching eudicots that was gained through the application of a reduced set of five non-coding and fast-evolving molecular markers, including the plastid petD (petB-petD spacer, petD group II intron) plus the trnL-F (trnL group I intron, trnL-F spacer) region and the matK gene. It showed a grade of Ranunculales, Sabiales, Proteales, Trochodendrales and Buxales. The current study differs in showing Sabiales as sister to Proteales in all phylogenetic analyses, in contrast to a second-branching inside early-diverging eudicots and a Bayesian tree displaying Sabiales branching after Proteales. All three hypotheses were tested concerning their likelihood. None of them was shown as being significantly declinable. Thus, albeit the number of characters and informative sites was doubled in comparision to the five-region investigation, the exact position of the Sabiales remained to be resolved with confidence. However, the advanced analyses of the phylogenetic structure of the three different non-coding partitions in comparison to coding genes resulted in the recognition of a significantly higher mean phylogenetic signal per informative character within spacers and introns than in the frequently applied slowly-evolving rbcL gene. The fast-evolving and well performing matK gene is shown to be nested within the non-coding partitions in this respect. Interestingly, the least constrained spacers displayed considerably less phylogenetic structure than both, the group I intron and the group II introns. Molecular evolution is again shown to follow certain patterns in angiosperms, as indicated by the occurrence of mutational hotspots and their connection to structural and functional constraints. This is especially shown for the group II introns studied where highly dynamic sequence parts were rather found in loops than stems.
The aim of chapter 2 was to present a comprehensive reconstruction of the phylogenetic relationships inside the order of Ranunculales, the first-branching clade of the early-diverging eudicots, with an emphasis on the evolution of growth forms within the group. Currently, the order comprises seven families (Ranunculaceae, Berberidaceae, Menispermaceae, Lardizabalaceae, Circaeasteraceae – not included due to lacking plant material, Eupteleaceae, Papaveraceae) containing predominantly herbaceous groups as well as trees and lianescent/shrubby forms. A surprising result that emerged due to the increased use of molecular data within systematics during the last twenty years is the inclusion of the woody Eupteleaceae into Ranunculales. Because of its adaptation to wind pollination it was previously placed next to Hamamelididea. Although phylogenetic hypotheses agreed in the exclusion of Eupteleaceae and the predominantly herbaceous Papaveraceae from a core clade the branching order within early-diverging Ranunculales remained a question to be answered. Thus phylogenetic reconstructions based on molecular data of 50 taxa (including outgroup), applying the well-performing non-coding petD and trnL-F as well as the trnK/matK-psbA region including the coding matK, were carried out. The comprehensive sampling resulted in fully resolved and highly supported phylogenies in both, maximum parsimony and model based approaches, with family relations within the core clade being identical and Euptelea appearing as first branching lineage. However, the relationships among the early-diverging Ranunculales could not be resolved with confidence, a result in line with the finding made in chapter 1. The topology was further resolved as Lardizabalaceae being sister to the remaining members of the order, followed by Menispermaceae, Berberidaceae and Ranunculaceae, the latter sharing a sistergroup relationship. Inside the mainly lianescent Lardizabalaceae the shrubby Decaisnea was clearly depicted as first-branching. The systematic controversial Glaucidium and Hydrastis are shown to be early-diverging members of the Ranunculaceae.
A central goal of chapter 3 was to test phylogenetic relationships among the members of the ranunculaceous tribe Anemoneae. Currently it consists of the subtribes Anemoninae including Anemone, Hepatica, Pulsatilla and Knowltonia, and Clematidinae, consisting of Archiclematis, Clematis and Naravelia. Furthermore the position and taxonomic rank of several lineages inside the subtribe Anemoninae were examined. Since recent comprehensive molecular-phylogenetic investigations have been carried out for the members of Clematidinae or Anemoninae, 63 species representing all major lineages of the two subtribes were included into analyses. Calculations were carried out on the basis of molecular data of the nuclear ribosomal ITS1&2 and the plastid atpB-rbcL intergenic spacer region. Phylogenetic reconstructions resulted in the recognition of two distinct clades within the tribe, thus corroborating the formation of the two subtribes. Within the subtribe Anemoninae the traditional genera Knowltonia, Pulsatilla and Hepatica are confidently shown to be nested within the genus Anemone. The preliminary classification of the genus, currently consisting of the two subgenera Anemone and Anemonidium, is complemented by the subgenus Hepatica.
|
5 |
Bestimmungs- und Verbreitungsatlas der Tertiärflora Sachsens – Angiospermenblätter und GinkgoEberlein, Mareike 08 July 2015 (has links) (PDF)
Die vorliegende Dissertation stellt den ersten Teil eines Nachschlagewerks zur Tertiärflora Sachsens dar. Dieser Teil umfasst alle Taxa, die sich auf Angiospermenblätter und auf Ginkgo gründen. Auf einen Überblick zum regionalgeologischen Kenntnisstand des Tertiärs in Sachsen folgend, werden phytostratigrafische Konzepte vorgestellt und ein historischer Abriss der tertiärpaläobotanischen Forschung in Sachsen gegeben.
Nach einer Erfassung aller bis Ende 2013 für das sächsische Tertiär publizierten pflanzlichen Makrofossilien und deren Fundorte (Primärdaten), welche durch projektbezogene Qualifikationsarbeiten Dritter durch zusätzliche Attribute ergänzt und vereinheitlicht wurden, werden die fossilen Taxa von Angiospermenblättern selektiert, deren Daten harmonisiert, ausgewertet und auf einen einheitlichen Forschungsstand gebracht. Für 187 von 235 untersuchten Taxa werden Datenblätter für einen Bestimmungsatlas erstellt. In diesem Atlas werden makro- und mikromorphologische Merkmale der Arten beschrieben, sowie Angaben zur Systematik, Synonymie, Paläoökologie und räumlicher und zeitlicher Verbreitung gemacht. Der beschreibende Teil wird durch Abbildungen und instruktive Zeichnungen ergänzt. Im Ergebnisteil werden die Daten nach ihrer Qualität innerhalb der Literatur begutachtet und anwendungsbezogen diskutiert.
Eine Bibliografie der umfangreichen paläobotanischen Literatur für sächsische Pflanzenfossilien rundet die Arbeit ab. Um die taxon- und fundortbezogenen Daten visualisieren und effektiv verwalten zu können, werden diese in ein Open Source-Geoinformationssystem (GIS) überführt. Die im GIS implementierten Untersuchungsergebnisse ermöglichen erstmalig sowohl eine Generierung von Verbreitungs-karten für die Taxa tertiärer Angiospermenblätter und des Ginkgos in Sachsen als auch eine Abfrage von topografischen, geologischen und paläobotanischen Informationen zu den Fossilfundstellen. Ein für das Fossilmaterial entwickelter Bestimmungsschlüssel erlaubt zudem eine grobe Determination der Funde im Gelände. Das Kompendium wird in gedruckter und digitaler Version für die freie Nutzung zur Verfügung gestellt. / The thesis represents the first part of a reference book to the Tertiary flora of Saxony. All taxa based on leaves of angiosperms and on Ginkgo are included in this compendium. After an overview about the geological state of knowledge on the Tertiary in Saxony, phytostratigraphic concepts are introduced and a historical survey on the Tertiary paleobotanical research in Saxony is given.
All plant macrofossils published from Saxonian Tertiary until end of 2013 and their sites of discovery (primary data) were recorded. This data were supplemented by additional attributes and unified through project-based M.Sc. theses. Subsequently, taxa of fossil leaves were selected, their data evaluated and brought to a consistent state of research. Data sheets for 187 out of 235 examined taxa were established for a determination atlas. Macro- and micromorphological attributes are described in this atlas and information are given about the systematic, synonymy, palaeoecology and spatial and temporal distribution. The describing part is illustrated by images and instructive drawings. The documented data were surveyed and discussed related to their quality within the literature in the result part. A bibliography of the extensive palaeobotanical literature for plant fossils of Saxony completes the work.
The taxon and locality related data are implemented into an open source geographical information system (GIS) in order to visualize and to manage them effectively. For the first time, the results of this thesis implemented in the GIS allow the generation of distribution maps for the taxa of leaves of Tertiary angiospermes and Ginkgo in Saxony. Furthermore it enables to query topographical, geological and paleobotanical information about the fossil sites. A determination key was developed for the fossil material that allows a rough determination of the findings in the field. The compendium will be available for free use in a printed as well as in a digital version.
|
6 |
Bestimmungs- und Verbreitungsatlas der Tertiärflora Sachsens – Angiospermenblätter und GinkgoEberlein, Mareike 08 July 2015 (has links)
Die vorliegende Dissertation stellt den ersten Teil eines Nachschlagewerks zur Tertiärflora Sachsens dar. Dieser Teil umfasst alle Taxa, die sich auf Angiospermenblätter und auf Ginkgo gründen. Auf einen Überblick zum regionalgeologischen Kenntnisstand des Tertiärs in Sachsen folgend, werden phytostratigrafische Konzepte vorgestellt und ein historischer Abriss der tertiärpaläobotanischen Forschung in Sachsen gegeben.
Nach einer Erfassung aller bis Ende 2013 für das sächsische Tertiär publizierten pflanzlichen Makrofossilien und deren Fundorte (Primärdaten), welche durch projektbezogene Qualifikationsarbeiten Dritter durch zusätzliche Attribute ergänzt und vereinheitlicht wurden, werden die fossilen Taxa von Angiospermenblättern selektiert, deren Daten harmonisiert, ausgewertet und auf einen einheitlichen Forschungsstand gebracht. Für 187 von 235 untersuchten Taxa werden Datenblätter für einen Bestimmungsatlas erstellt. In diesem Atlas werden makro- und mikromorphologische Merkmale der Arten beschrieben, sowie Angaben zur Systematik, Synonymie, Paläoökologie und räumlicher und zeitlicher Verbreitung gemacht. Der beschreibende Teil wird durch Abbildungen und instruktive Zeichnungen ergänzt. Im Ergebnisteil werden die Daten nach ihrer Qualität innerhalb der Literatur begutachtet und anwendungsbezogen diskutiert.
Eine Bibliografie der umfangreichen paläobotanischen Literatur für sächsische Pflanzenfossilien rundet die Arbeit ab. Um die taxon- und fundortbezogenen Daten visualisieren und effektiv verwalten zu können, werden diese in ein Open Source-Geoinformationssystem (GIS) überführt. Die im GIS implementierten Untersuchungsergebnisse ermöglichen erstmalig sowohl eine Generierung von Verbreitungs-karten für die Taxa tertiärer Angiospermenblätter und des Ginkgos in Sachsen als auch eine Abfrage von topografischen, geologischen und paläobotanischen Informationen zu den Fossilfundstellen. Ein für das Fossilmaterial entwickelter Bestimmungsschlüssel erlaubt zudem eine grobe Determination der Funde im Gelände. Das Kompendium wird in gedruckter und digitaler Version für die freie Nutzung zur Verfügung gestellt. / The thesis represents the first part of a reference book to the Tertiary flora of Saxony. All taxa based on leaves of angiosperms and on Ginkgo are included in this compendium. After an overview about the geological state of knowledge on the Tertiary in Saxony, phytostratigraphic concepts are introduced and a historical survey on the Tertiary paleobotanical research in Saxony is given.
All plant macrofossils published from Saxonian Tertiary until end of 2013 and their sites of discovery (primary data) were recorded. This data were supplemented by additional attributes and unified through project-based M.Sc. theses. Subsequently, taxa of fossil leaves were selected, their data evaluated and brought to a consistent state of research. Data sheets for 187 out of 235 examined taxa were established for a determination atlas. Macro- and micromorphological attributes are described in this atlas and information are given about the systematic, synonymy, palaeoecology and spatial and temporal distribution. The describing part is illustrated by images and instructive drawings. The documented data were surveyed and discussed related to their quality within the literature in the result part. A bibliography of the extensive palaeobotanical literature for plant fossils of Saxony completes the work.
The taxon and locality related data are implemented into an open source geographical information system (GIS) in order to visualize and to manage them effectively. For the first time, the results of this thesis implemented in the GIS allow the generation of distribution maps for the taxa of leaves of Tertiary angiospermes and Ginkgo in Saxony. Furthermore it enables to query topographical, geological and paleobotanical information about the fossil sites. A determination key was developed for the fossil material that allows a rough determination of the findings in the field. The compendium will be available for free use in a printed as well as in a digital version.
|
Page generated in 0.0752 seconds