• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 11
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relações ecológicas entre Euryades corethrus BOISDUVAL e Euryades. duponchelii LUCAS (LEPDOPTERA: TROIDINI) avaliadas através de modelagem preditiva de distribuição de espécies e interações com suas plantas hospedeiras e biogeografia

Atencio, Guilherme Wagner Gutierrez January 2014 (has links)
Euryades corethrus e Euryades duponchelii são duas espécies de borboletas classificadas na família Papilionidae, que se distribuem nas províncias biogeográficas do Chaco e Pampa ao longo da Argentina, Uruguai, Paraguai e sul do Brasil. Os registros de ocorrência, obtidos através de levantamento em coleções entomológicas e inventariamentos de fauna presentes na literatura, sugerem que não há grande sobreposição ecológica entre estas espécies, apesar delas utilizarem as mesmas plantas como hospedeiras (Aristolochia sessilifolia, Aristolochia fimbriata, Aristolochia lingua, Aristolochia angustifolia e Aristolochia labiata). De acordo com os registros obtidos, as populações de ambas as espécies apresentam distribuições que sugerem uma especiação por alopatria. Contudo, como não existem barreiras geográficas à dispersão das espécies, os motivos de tal separação espacial entre as populações não são conhecidos. O objetivo deste trabalho é estudar os fatores ecológicos que possam estar relacionados às distribuições geográficas das duas espécies de Euryades. Inicialmente foi feita uma modelagem preditiva de distribuição (MPD) para as duas espécies de borboletas, utilizando para tanto as ocorrências registradas em coleções e publicações científicas. A seguir, o mesmo procedimento foi aplicado às plantas hospedeiras, a fim de relacionar a área de distribuição das borboletas com o recurso alimentar dos imaturos. A análise da sobreposição entre estas MPDs não demonstrou relação entre a ocorrência da borboleta com uma espécie particular de Aristolochia. Entre as espécies de Euryades foi verificada sobreposição de ocorrência, o que sugere requerimentos ecológicos similares, hipótese corroborada pela análise de NMDS (Nonmetric Multidimensional Scaling). A análise Panbiogeográfica suporta a hipótese de que um processo biogeográfico histórico possa ter causado a separação de uma espécie ancestral nas duas atuais. Possivelmente tenha ocorrido uma especiação por alopatria, o que levou as duas populações separadas a evoluírem adaptações específicas às condições microecológicas as quais foram submetidas.
2

Relações ecológicas entre Euryades corethrus BOISDUVAL e Euryades. duponchelii LUCAS (LEPDOPTERA: TROIDINI) avaliadas através de modelagem preditiva de distribuição de espécies e interações com suas plantas hospedeiras e biogeografia

Atencio, Guilherme Wagner Gutierrez January 2014 (has links)
Euryades corethrus e Euryades duponchelii são duas espécies de borboletas classificadas na família Papilionidae, que se distribuem nas províncias biogeográficas do Chaco e Pampa ao longo da Argentina, Uruguai, Paraguai e sul do Brasil. Os registros de ocorrência, obtidos através de levantamento em coleções entomológicas e inventariamentos de fauna presentes na literatura, sugerem que não há grande sobreposição ecológica entre estas espécies, apesar delas utilizarem as mesmas plantas como hospedeiras (Aristolochia sessilifolia, Aristolochia fimbriata, Aristolochia lingua, Aristolochia angustifolia e Aristolochia labiata). De acordo com os registros obtidos, as populações de ambas as espécies apresentam distribuições que sugerem uma especiação por alopatria. Contudo, como não existem barreiras geográficas à dispersão das espécies, os motivos de tal separação espacial entre as populações não são conhecidos. O objetivo deste trabalho é estudar os fatores ecológicos que possam estar relacionados às distribuições geográficas das duas espécies de Euryades. Inicialmente foi feita uma modelagem preditiva de distribuição (MPD) para as duas espécies de borboletas, utilizando para tanto as ocorrências registradas em coleções e publicações científicas. A seguir, o mesmo procedimento foi aplicado às plantas hospedeiras, a fim de relacionar a área de distribuição das borboletas com o recurso alimentar dos imaturos. A análise da sobreposição entre estas MPDs não demonstrou relação entre a ocorrência da borboleta com uma espécie particular de Aristolochia. Entre as espécies de Euryades foi verificada sobreposição de ocorrência, o que sugere requerimentos ecológicos similares, hipótese corroborada pela análise de NMDS (Nonmetric Multidimensional Scaling). A análise Panbiogeográfica suporta a hipótese de que um processo biogeográfico histórico possa ter causado a separação de uma espécie ancestral nas duas atuais. Possivelmente tenha ocorrido uma especiação por alopatria, o que levou as duas populações separadas a evoluírem adaptações específicas às condições microecológicas as quais foram submetidas.
3

Relações ecológicas entre Euryades corethrus BOISDUVAL e Euryades. duponchelii LUCAS (LEPDOPTERA: TROIDINI) avaliadas através de modelagem preditiva de distribuição de espécies e interações com suas plantas hospedeiras e biogeografia

Atencio, Guilherme Wagner Gutierrez January 2014 (has links)
Euryades corethrus e Euryades duponchelii são duas espécies de borboletas classificadas na família Papilionidae, que se distribuem nas províncias biogeográficas do Chaco e Pampa ao longo da Argentina, Uruguai, Paraguai e sul do Brasil. Os registros de ocorrência, obtidos através de levantamento em coleções entomológicas e inventariamentos de fauna presentes na literatura, sugerem que não há grande sobreposição ecológica entre estas espécies, apesar delas utilizarem as mesmas plantas como hospedeiras (Aristolochia sessilifolia, Aristolochia fimbriata, Aristolochia lingua, Aristolochia angustifolia e Aristolochia labiata). De acordo com os registros obtidos, as populações de ambas as espécies apresentam distribuições que sugerem uma especiação por alopatria. Contudo, como não existem barreiras geográficas à dispersão das espécies, os motivos de tal separação espacial entre as populações não são conhecidos. O objetivo deste trabalho é estudar os fatores ecológicos que possam estar relacionados às distribuições geográficas das duas espécies de Euryades. Inicialmente foi feita uma modelagem preditiva de distribuição (MPD) para as duas espécies de borboletas, utilizando para tanto as ocorrências registradas em coleções e publicações científicas. A seguir, o mesmo procedimento foi aplicado às plantas hospedeiras, a fim de relacionar a área de distribuição das borboletas com o recurso alimentar dos imaturos. A análise da sobreposição entre estas MPDs não demonstrou relação entre a ocorrência da borboleta com uma espécie particular de Aristolochia. Entre as espécies de Euryades foi verificada sobreposição de ocorrência, o que sugere requerimentos ecológicos similares, hipótese corroborada pela análise de NMDS (Nonmetric Multidimensional Scaling). A análise Panbiogeográfica suporta a hipótese de que um processo biogeográfico histórico possa ter causado a separação de uma espécie ancestral nas duas atuais. Possivelmente tenha ocorrido uma especiação por alopatria, o que levou as duas populações separadas a evoluírem adaptações específicas às condições microecológicas as quais foram submetidas.
4

Aristolochiaceae juss. na Floresta Atlântica do nordeste do Brasil

ARAÚJO, Ariclenes de Almeida Melo 31 January 2013 (has links)
Submitted by Milena Dias (milena.dias@ufpe.br) on 2015-03-12T19:13:42Z No. of bitstreams: 2 Dissertaçao Ariclene Araújo.pdf: 2706503 bytes, checksum: 44b57dd039773243f76c3cdd70ecd303 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-03-12T19:13:43Z (GMT). No. of bitstreams: 2 Dissertaçao Ariclene Araújo.pdf: 2706503 bytes, checksum: 44b57dd039773243f76c3cdd70ecd303 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2013 / FACEPE, CNPQ, U.S. National Science Foundation, Velux Stiftung, Beneficia Foundation / São aqui reconhecidas 16 espécies de Aristolochiaceae para a Mata Atlântica do nordeste do Brasil, todas representantes do gênero Aristolochia e a maioria pertencente à seção Gymnolobus, subseção Hexandrae, série Hexandrae, subsérie Hexandrae. Elas são raras em campo e geralmente são encontradas no dossel ou bordas de mata. As espécies são reconhecidas principalmente pela presença de pseudoestípula, morfologia do limbo do perianto, forma da folha e pubescência. Dentre as espécies, quatro são endêmicas da Mata Atlântica do nordeste do Brasil e duas recentemente descritas — A. setulosa e Aristolochia sp. nov. Novos registros de distribuição foram encontrados para A. bahiensis, A. birostris, A. elegans, A. labiata, A. melastoma, A. odora, A. papillaris, A. paulistana, A. tamnifolia e A. trilobata, sendo o estado da Bahia o mais rico em número de espécies.
5

Evolution of the genus Aristolochia (Aristolochiaceae) in the Eastern Mediterranean including the Near East and Caucasia

Mahfoud, Hafez M. 19 February 2010 (has links) (PDF)
The Aristolochiaceae are one of the largest angiosperm families, the family has been divided into two subfamilies: Asaroideae, which include Asarum and Saruma, and Aristolochioideae, which includes Thottea sensu lato and Aristolochia sensu lato (Kelly and Gonzales, 2003). Aristolochia sensu lato comprise between 450 and 600 species, distributed throughout the world with centers of diversities in the tropical and subtropical regions (Neinhuis et al., 2005, Wanke et al., 2006a, 2007). However, the extended Mediterranean region including Turkey, the Caucasus and the Near East is likely to be the only diversity hotspot of the genus Aristolochia in the northern hemisphere were up to 60 species and subspecies could be observed (Wanke 2007). Most important contributions to the knowledge of these species were published by Nardi (1984, 1988, 1991, 1993) and Davis & Khan (1961, 1964, 1982), all of these studies were based on morphological characters only. In recent years, with the progress of molecular techniques and in light of the systematic chaos, a detailed study was needed to unravel the evolutionary history prior to a taxonomic revision of this group. The first chapter of my thesis should be regarded as the starting point for more detailed investigation on population level. Preliminary molecular phylogenitic analysis recovered the Mediterranean Aristolochia species as monophyletic (de Groot et al 2006). However, only very few members were included in that study. The latest phylogenetic study by Wanke (2007) dealed with west Mediterranean Aristolochia species and sampled also few members belonging to the east Mediterranean and Caucasian species (3 from Greece, 2 from Georgia and 1 from Turkey). This study reported the Mediterranean Aristolochia species as two molecular and morphologically well supported clades, which were sister to each other. Furthermore, the two closely related species A. sempervirens and A. baetica which have an east west vicariance and are known as Aristolochia sempervirens complex has been recovered as sister group to the remaining west Mediterranean species. A detailed investigation of the evolutionary history of this group is the topic of the second chapter of my thesis (Chapter 2). The Aristolochia sempervirens complex is characterized by an unusual growth form and has a circum Mediterranean distribution. The investigation of these species complex seem to be of great importance to understand speciation and colonization of the Mediterranean by the genus Aristolochia and might shade light in historical evolutionary processes of other plant lineages in the Mediterranean. Furthermore, I test applicability and phylogenetic power of a nuclear single copy gene (nSCG) region to reconstruct well resolved and highly supported gene genealogies as a prerequisite to study evolutionary biology questions in general. Furthermore, a comprehensive overview of leaf epicuticular waxes, hairs and trichomes of 54 species from the old and new world taxa of the genus Aristolochia were investigated using scanning electron microscopy (SEM) to clarify taxonomic status of theses species in contrast to their molecular position. Also this study which is the third chapter of this thesis (Chapter 3), has a strong focus on Mediterranean Aristolochia and tries to provide additional support for molecular findings based on epicuticular waxes and to test them as synapomorphies. Each chapter has its own introduction and abstract resulting in a short general introduction here.
6

Evolution of the genus Aristolochia (Aristolochiaceae) in the Eastern Mediterranean including the Near East and Caucasia

Mahfoud, Hafez M. 09 February 2010 (has links)
The Aristolochiaceae are one of the largest angiosperm families, the family has been divided into two subfamilies: Asaroideae, which include Asarum and Saruma, and Aristolochioideae, which includes Thottea sensu lato and Aristolochia sensu lato (Kelly and Gonzales, 2003). Aristolochia sensu lato comprise between 450 and 600 species, distributed throughout the world with centers of diversities in the tropical and subtropical regions (Neinhuis et al., 2005, Wanke et al., 2006a, 2007). However, the extended Mediterranean region including Turkey, the Caucasus and the Near East is likely to be the only diversity hotspot of the genus Aristolochia in the northern hemisphere were up to 60 species and subspecies could be observed (Wanke 2007). Most important contributions to the knowledge of these species were published by Nardi (1984, 1988, 1991, 1993) and Davis & Khan (1961, 1964, 1982), all of these studies were based on morphological characters only. In recent years, with the progress of molecular techniques and in light of the systematic chaos, a detailed study was needed to unravel the evolutionary history prior to a taxonomic revision of this group. The first chapter of my thesis should be regarded as the starting point for more detailed investigation on population level. Preliminary molecular phylogenitic analysis recovered the Mediterranean Aristolochia species as monophyletic (de Groot et al 2006). However, only very few members were included in that study. The latest phylogenetic study by Wanke (2007) dealed with west Mediterranean Aristolochia species and sampled also few members belonging to the east Mediterranean and Caucasian species (3 from Greece, 2 from Georgia and 1 from Turkey). This study reported the Mediterranean Aristolochia species as two molecular and morphologically well supported clades, which were sister to each other. Furthermore, the two closely related species A. sempervirens and A. baetica which have an east west vicariance and are known as Aristolochia sempervirens complex has been recovered as sister group to the remaining west Mediterranean species. A detailed investigation of the evolutionary history of this group is the topic of the second chapter of my thesis (Chapter 2). The Aristolochia sempervirens complex is characterized by an unusual growth form and has a circum Mediterranean distribution. The investigation of these species complex seem to be of great importance to understand speciation and colonization of the Mediterranean by the genus Aristolochia and might shade light in historical evolutionary processes of other plant lineages in the Mediterranean. Furthermore, I test applicability and phylogenetic power of a nuclear single copy gene (nSCG) region to reconstruct well resolved and highly supported gene genealogies as a prerequisite to study evolutionary biology questions in general. Furthermore, a comprehensive overview of leaf epicuticular waxes, hairs and trichomes of 54 species from the old and new world taxa of the genus Aristolochia were investigated using scanning electron microscopy (SEM) to clarify taxonomic status of theses species in contrast to their molecular position. Also this study which is the third chapter of this thesis (Chapter 3), has a strong focus on Mediterranean Aristolochia and tries to provide additional support for molecular findings based on epicuticular waxes and to test them as synapomorphies. Each chapter has its own introduction and abstract resulting in a short general introduction here.
7

Evolution of the genus Aristolochia - Systematics, Molecular Evolution and Ecology / Evolution der Gattung Aristolochia - Systematik, Molekulare Evolution und Ökologie

Wanke, Stefan 24 January 2007 (has links) (PDF)
Evolution of Piperales – matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Piperales are one of the largest basal angiosperm orders with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 1,000 species), Peperomia (ca. 1,500-1,700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa representing all families (except Hydnoraceae) and all generic segregates (except Euglypha within Aristolochiaceae) of Piperales. A large number of highly informative indels are found in the Piperales trnK/matK dataset. Within a narrow region approximately 500 nt downstream in the matK coding region (CDS), a length variable simple sequence repeat (SSR) expansion segment occurs, in which insertions and deletions have led to short frame-shifts. These are corrected shortly afterwards, resulting in a maximum of 6 amino acids being affected. Furthermore, additional non-functional matK copies were found in Zippelia begoniifolia, which can easily be discriminated from the functional open reading frame (ORF). The trnK/matK sequence data fully resolve relationships within Peperomia, whereas they are not effective within Piper. The resolution contrast is correlated with the rate heterogenity between those lineages. Parsimony, Bayesian and likelihood analyses result in virtually the same topology, and converge on the monophyly of Piperaceae and Saururaceae. Lactoris gains high support as sister to Aristolochiaceae subf. Aristolochioideae, but the different tree inference methods yield conflicting results with respect to the relationships of subfam. Asaroideae. In Piperaceae, a clade formed by the monotypic genus Zippelia and the small genus Manekia (=Sarcorhachis) is sister to the two large genera Piper and Peperomia. Systematics of pipevines – Combining morphological and fast-evolving molecular characters to investigate the relationships within subfamily Aristolochioideae (Aristolochiaceae) A combined phylogenetic analysis of the Aristolochioideae was conducted based on 72 morphological characters and molecular datasets (matK gene, trnK intron, trnL intron, trnL-trnF spacer). The analysis sampled 33 species as the ingroup, including two species of Thottea and 30 species of Aristolochia and the monotypic genus Euglypha, which represent all the infrageneric taxa formally described; Saruma henryi and Asarum caudatum were used as the outgroup. The results corroborate a sister-group relationship between Thottea and Aristolochia, and the paraphyly of Aristolochia with respect to Euglypha that consequently should be included into Aristolochia. Two of the three subgenera within Aristolochia (Isotrema and Pararistolochia) are shown to be monophyletic, whereas the signal obtained from the different datasets about the relationships within subg. Aristolochia is low and conflicting, resulting in collapsed or unsupported branches. The relationship between the New World and the Old World species of subgenus Aristolochia is conflictive because morphological data support these two groups as monophyletic, whereas molecular data show the monophyletic Old World species of Aristolochia nested within the New World species. A sister group relationship is proposed between A. lindneri and pentandrous species, which suggests that a group of five species from central and southern South America (including A. lindneri) could be monophyletic and sister to Aristolochia subsection Pentandrae, a monophyletic taxon consisting of about 35 species from southern USA, Mesoamerica, and the West Indies. Colonisation, phylogeography and evolution of endemism in Mediterranean Aristolochia (Aristolochiaceae). This study provides evidence for a multiple colonisation of the western Old World from Asian ancestors within Aristolochia section Diplolobus (subsection Aristolochia and Podanthemum). Within subsection Podanthemum it is assumed, that the colonisation of the African continent happened at least two times independently. In contrast, for subsection Aristolochia, a rapid morphological radiation in the Near East (or close to this area) with subsequent star like colonisation of the different current distribution areas, which is not paralleled on the molecular level, appears to be more likely. Phylogenetic tree reconstruction is unsupported for these clades, but most clades are highly supported as monophyletic. Interestingly the Mediterranean and temperate Eurasian species, which are morphologically distinct (A. pistolochia, A. clematitis) are not clustering within the main clades, but are independent lineages. Analogue, A. rigida a species from Somalia is well-supported sister to the subsection Aristolochia. Within subsection Podanthemum the colonisation event from an Asian ancestor is clearly traceable, whereas in subsection Aristolochia the path is not traceable, since the ancestors are extinct or not present in the connecting areas. Within the Mediterranean, Near East and Caucasian species of subsection Aristolochia two morphologically and biogeographically well supported groups can be identified: the Near East/Caucasian species and the West Mediterranean species. The previous groupings for the latter, based on morphological characters, could be substantiated only partly by our results. This study provides the first phylogeny of all West Mediterranean species. In addition an independent complex is established including some micro endemic species. The phylogenetic results are discussed with respect to biogeography, and morphology, to give a first insight into the radiation and colonisation of the genus Aristolochia in the Mediterranean region. Universal primers for a large cryptically simple cpDNA microsatellite region in Aristolochia. We provide a new and valuable marker to study species relationships and population genetics in order to trace evolutionary, ecological, and conservational aspects in the genus Aristolochia. Universal primers for amplification and subsequent sequencing of a chloroplast microsatellite locus inside the trnK intron are presented. Utility of the primers has been tested in 32 species representing all clades of Aristolochia, including population studies within the A. pallida complex, A. clusii and A. rotunda. The microsatellite region is characterized as a (AnTm)k repeat of 22–438 bp containing a combination of different repeats arranged as ‘cryptically simple’. Trapped! Pollination of Aristolochia pallida Willd. in the Mediterranean A first study of the pollination biology of a Mediterranean Aristolochia species in its natural habitat is presented. 183 flowers of Aristolochia pallida were investigated, which in total contained 73 arthropods, dominated by two groups of Diptera, Sciaridae (37%) and Phoridae (19%). However, only Phoridae are regarded as potential pollinators, since pollen has been found exclusively on the body surfaces of these insects. All Phoridae belong to the genus Megaselia and are recognised as four undescribed species. The measurements of flower and insect dimensions suggest that size is an important constrain for successful pollination: 1) the insects must have a definitive size for being able to enter the flower and 2) must be able to get in touch with the pollen. Only very few insect groups found in Aristolochia pallida fulfil these size requirements. However, size alone is not a sufficient constrain as too many fly species of the same size might be trapped but not function as pollinators. Instead, specific attraction is required as otherwise pollen is lost. Since all trapped Phoridae are males, a chemical attraction (pheromones) is proposed as an additional constrain. Since A. pallida flowers are protogynous, the record of Megaselia loaded with pollen found in a flower during its female stage proves that this insect must have been visited at least one different flower during its male stage before. Further on, this observation provides strong evidence that the flowers are cross-pollinated. All these factors indicate a highly specialised pollination of Aristolochia pallida by Megaselia species.
8

Ecologia e Biologia da Polinização de Aristolochia gigantea (Aristolochiaceae) Mart. e Zucc.

Sousa, Juliana Hipólito 25 May 2016 (has links)
Submitted by Mendes Eduardo (dasilva@ufba.br) on 2013-07-18T11:09:58Z No. of bitstreams: 1 Juliana Hipólito dissertação.pdf: 2372033 bytes, checksum: c04375fe806a41cb5114510712bae578 (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-05-25T20:01:20Z (GMT) No. of bitstreams: 1 Juliana Hipólito dissertação.pdf: 2372033 bytes, checksum: c04375fe806a41cb5114510712bae578 (MD5) / Made available in DSpace on 2016-05-25T20:01:21Z (GMT). No. of bitstreams: 1 Juliana Hipólito dissertação.pdf: 2372033 bytes, checksum: c04375fe806a41cb5114510712bae578 (MD5) / Capes, Cnpq / A literatura clássica em ecologia da polinização baseia-se em uma visão adaptacionista, na qual os polinizadores teriam características especializadas às flores que visitam e essas aos seus polinizadores, sendo essas “adaptações” chamadas síndromes de polinização, onde a habilidade dos polinizadores em acessar as flores seria o foco central dos estudos (Faegri & van der Pijil 1979). Embora essa visão ainda perdure nos estudos atuais (e.g. Hingston & McQuillan 2000, Pérez et al. 2009), pelo fato das síndromes serem bons guias que provêem uma idéia inicial sobre a ecologia da polinização da planta, elas não devem ser utilizadas exclusivamente para desenhar conclusões sem estudos empíricos. As interações entre plantas e polinizadores são amplamente diversas e complexas para serem resumidas em alguns poucos termos, como características fenotípicas das espécies (Ollerton & Watts 2000). Mesmo nas espécies que parecem ter adaptações para tipos particulares de polinizadores, observações detalhadas demonstram a ocorrência de múltiplos visitantes nas flores (Ollerton 1996). Assim, caracteres específicos utilizados para previsão das síndromes, como caracteres florais nem sempre combinam perfeitamente com a morfologia dos polinizadores (Sakai et al. 1999). Complementarmente, a associação da morfologia floral e função das plantas aos caracteres energéticos, morfológicos e comportamentais dos polinizadores, pode não ter relação direta com a origem de adaptações, pois a polinização pode ser realizada relativamente com sucesso mesmo sem uma relação direta histórica com determinado grupo de polinizador, tratando-se muitas vezes de exaptações ao invés de adaptações senso stricto (Herrera 1996). Exaptações, assim, sugerem características que não foram “desenhadas” para determinada função propriamente, mas que existem por outras razões não relacionadas diretamente com pressões seletivas, sendo cooptadas para um novo uso (Gould & Vrba 1982, Sepúlveda 1 & El-Hani 2008). Além da atração por recursos oferecidos pelas plantas, a presença de polinizadores e flutuação destes nas comunidades, muitas vezes é influenciada pelo ambiente físico que age como filtro das comunidades (Sargent & Ackerly 2008), através de características abióticas (Andrieu et al. 2009) como por exemplo, características do micro habitat e/ou microclima (Herrera 1995, Torres et al. 2007) ou até mesmo por fatores em maior escala, decorrentes das mudanças climáticas globais (Torres et al. 2007). Além disso, a composição e a interação da fauna visitante também pode ser reflexo do contexto da paisagem na qual a população está inserida (Steffan-Dewenter et al. 2002, Devoto et al. 2005), revelando interações mais ou menos especializadas (Warren et al. 1988, Kearns 1992, Torres et al. 2007). Assim, mesmo quando muitos caracteres preditos pelas síndromes ocorrem, observam-se variações na fauna visitante, como por exemplo, espécies de plantas com síndrome de polinização noturna sendo mais eficientemente polinizadas por visitantes diurnos (Wolff et al. 2003, Giménez-Benavides et al. 2007), resultado da escassez de polinizadores por pressões ambientais (Wolff et al. 2003). Estudos têm demonstrado que espécies vegetais restritas a um único polinizador mais são exceções do que regra (Waser et al. 1996, Wolff et al. 2003, Sakai et al. 1999). Entretanto, apesar da maioria das espécies receber um espectro amplo de visitantes florais, nem todo visitante é um polinizador eficiente para garantir o mesmo sucesso reprodutivo (Lau & Galloway 2004, Carvalho & Machado 2006), consequentemente, para compreender a complexidade das interações entre flores e visitantes é fundamental avaliar a eficiência dos visitantes florais como polinizadores efetivos. A exploração de recursos florais muitas vezes requer habilidades comportamentais dos polinizadores para detectar sinais e associá-los aos recursos, além de habilidades morfológicas e fisiológicas para explorá-los (Waser et al. 1996), tais aspectos podem influenciar na eficiência do polinizador do ponto de vista da planta relacionado por exemplo, ao tamanho do polinizador (Boggs 1988), do seu aparato bucal (Svensson et al. 1998, Temeles et al. 2000), tempo gasto nas flores (Tepedino 1981, Keys et al.1995, Singh 2008), frequência de visitas (Tepedino 1981, Keys et al.1995), e forrageamento (Carvalho & Oliveira 2003). Essa associação de requerimentos do visitante com a sua capacidade de transporte dos grãos de pólen das plantas podem diferenciar um visitante floral de um polinizador efetivo, ou seja, aquele que realiza visitas legítimas, sem a retirada apenas do recurso, mas contatando as partes reprodutivas da planta possibilitando sua fecundação. Algumas espécies, realmente parecem ter estratégias especializadas que combinam suas estruturas reprodutivas com a capacidade dos visitantes em adquirir os recursos, restringindo a gama de visitantes que podem obter o recurso, e que podem de fato realizar a polinização, como por exemplo, plantas com anteras poricidas (Laporta 2005), grande parte das orquídeas com suas polínias (Weston et al. 2005), espécies do gênero Ficus e vespas (Chalcidoidea, Agaonidae) (Murray 1985), Yucca sp. (Agavaceae) e as larvas de lepidópteros que se desenvolvem em flores que serão polinizadas pelos adultos (Aker & Udovic 1981, Pellmyr & Huth 1994), e flores com mecanismos de armadilhas (Dafni 1984), dentre muitos outros. A especialização de uma planta a determinado grupo de polinizador, pode aumentar o seu sucesso reprodutivo, pois normalmente implica em uma menor perda de pólen (Dafni 1984, Wilcock & Neiland 2002). Por outro lado, morfologias florais mais especializadas, estariam mais sujeitas às variações nos “serviços” de polinização (Waser et al. 1996), ou seja, o seu sucesso reprodutivo correria maior risco decorrente da falha do transporte de pólen pela falta de vetores especializados (Wilcock & Neiland 2002). Variações nos “serviços” de polinização podem estar relacionadas à limitação de polinizadores, pólen e/ou polinização, muitas vezes fruto da pressão antrópica em ambientes naturais (Aizen & Feinsinger 1994, Kearns et al. 1998). Consequências como a diminuição significativa do número de frutos, podem ser observadas (Berjano et al. 2011), assim como influências na dinâmica populacional e viabilidade, com a limitação do recrutamento (Price et al. 2008). A limitação dos “serviços” de polinização, também pode ser consequência do isolamento de populações, decorrente de processos como a fragmentação (Kearns et al. 1998), ou de condições abióticas adversas como populações em locais de altitude na paisagem, que impedem o deslocamento de polinizadores (Eriksen et al. 1993, Arroyo et al. 2006, Pérez et al. 2009). Do ponto de vista do visitante floral, as implicações podem ocorrer em seu comportamento, que normalmente é afetado (Goverde et al. 2002), interferindo nas distâncias de forrageamento e densidades populacionais (Aizen & Feinsinger 1994). Para as plantas, as taxas de polinização são afetadas (Cunningham 2000), reduzindo a aptidão pelo decréscimo no número de óvulos fertilizados, de sementes maduras e de tubos polínicos (Aizen & Feinsinger 1994), aumentando as taxas de intercruzamento e reduzindo a variabilidade genética (Goverde et al. 2002), podendo levar inclusive a extinção de espécies (Lennartsson 2002). Sabe-se, entretanto, que as estratégias das plantas não se limitam apenas às interações com seus polinizadores, pois espécies podem se reproduzir sem a presença de vetores, através de estratégias de autofertilização, em que o pólen de uma mesma planta alcança seu estigma viável, ou através da apomixia, em que o fruto é formado sem a fusão de gametas, com o desenvolvimento do óvulo sem a recombinação de material genético. Muitas espécies combinam mecanismos associados à reprodução por vetores e sem eles, sendo as chamadas estratégias mistas de polinização (Kevan 1984, Goodwillie et al. 2005). Em populações de plantas isoladas, as frequências de polinização devem diminuir tanto pelas distâncias de forrageamento dos polinizadores, quanto pela atração destes que diminui pelas manchas populacionais menores (Kunin 1993, Mustajärvi 2001). Por outro lado, nessas espécies isoladas, com sistemas mistos de polinização, mecanismos de autofertilização são registrados em maior frequência (Eriksen et al. 1993, Arroyo et al. 2006, Pérez et al. 2009). Normalmente, a polinização cruzada, parece ser favorecida quando há a possibilidade desta ocorrer. Diversos são os exemplos de estudos com espécies economicamente importantes demonstrando um incremento da variabilidade genética pela polinização cruzada que resulta em aumento na produção de frutos e sementes (estudos citados em Free 1993, Maccagnani et al. 2003, Almeida et al. 2000) e/ou no maior vigor dos frutos (Alves & Freitas 2007, De Holanda-Neto et al. 2002, Nebel & Trump (1932). Em contraposição às vantagens da polinização cruzada, a auto-polinização, pode reduzir a formação de sementes, produzir sementes inviáveis (Torres & Galetto 2008) e levar a depressão genética (Mahy & Jacquemart 1999, Cheptou et al. 2001). No entanto, estudos têm revelado que em espécies com autogamia parcial ou completa o polimorfismo pode ser mantido (Marshall & Weir 1979), e que espécies com longo histórico de auto-cruzamentos parecem menos susceptíveis aos efeitos da depressão genética, demonstrando adaptabilidade a tal condição (Charlesworth & Charlesworth 1987). Já para plantas que se reproduzem por agamospermia, o polimorfismo genético não é mantido (Marshall & Weir 1979) e em espécies endêmicas ou de distribuição restrita os efeitos da baixa variabilidade genética parecem ser acentuados (Palacios & González-Candelas 1997). Por outro lado, essa estratégia, pode garantir a reprodução eliminando a dependência de polinizadores, aumentando também o potencial de colonização da espécie vegetal (Baker 1955). A ocorrência da polinização cruzada depende de diversos fatores como comportamento e presença de polinizadores e das características estruturais das flores, como cor, recursos e forma, que podem exercer pressões sobre as interações (Ellstrand & Elam 1993). Caracteres como barreiras temporais e espaciais na maturação dos órgãos reprodutivos, parecem auxiliar no favorecimento da polinização cruzada e por vezes no impedimento da autofertilização, já que o depósito de pólen por auto-polinização pode ter custo negativo no sucesso reprodutivo da espécie (Galen et al.1989). Contudo, não ocorrendo a polinização cruzada as plantas têm o benefício da formação de sementes ou frutos que mesmo quando possuem menor vigor garantem sua sobrevivência. A existência de um sistema misto de polinização é, assim, uma importante estratégia, mesmo em plantas especialistas, que apresentam neste sistema um produto de compensação muitas vezes por pressões de um cenário evolutivo em ambientes caracterizados por “serviços” de polinização variáveis, ou seja, habitats imprevisíveis (Pérez et al. 2009). Para Darwin, a existência de flores com morfologias especializadas, como Ophrys apifera, que são auto-fertilizadas, era um grande paradoxo já que seria esperado a ausência de autopolinização espontânea em plantas especializadas, principalmente devido às restrições mecânicas e seu tipo de desenvolvimento, como relatado em seu livro, publicado em 1862 (The various contrivances by wich British and Foreign Orchids are Fertilized by Insects). Atualmente, mais exemplos são encontrados de plantas com morfologias elaboradas ou ditas especializadas, como as orquídeas ou espécies da família Solanaceae, mas que devido às condições ambientais adversas utilizam mecanismos de fertilização que não incluem visitantes florais, embora em alguns casos, como das Solanaceae com anteras poricidas, a taxa de autofertilização seja bastante baixa (Liu et al. 2006, Pérez et al. 2009). As mudanças, ou as explicações para a adaptabilidade, mesmo quando aparentes, contudo, nem sempre são simples, envolvendo em muitos casos questões históricas e evolutivas, associadas à ecologia e à genética das espécies, que nem sempre podem ser acessadas. Assim, questões relativas à aplicabilidade das síndromes de polinização, ao papel da limitação de pólen e/ou polinizadores e ao efeito do isolamento de populações e interferência nos sistemas reprodutivos são grandes paradigmas encontrados na literatura em ecologia da polinização, cujos esforços para entendimento explicam-se na tentativa de entender as relações dentro de diferentes escalas e possíveis rupturas das relações entre plantas e seus polinizadores. Diante disso, a espécie Aristolochia gigantea Mart e Zucc apresenta-se, aparentemente, como excelente modelo para investigações de tais paradigmas nos tempos atuais. Esta espécie pertence à família Aristolochiaceae, grupo de angiospermas basais, que compreende cerca de 500 espécies, a maioria (370 espécies) inclusas no gênero Aristolochia (Judd et al. 2009), de distribuição primaria em regiões tropicais, embora muitas espécies desse gênero também sejam encontradas em ambientes temperados (Lawrence & González 2003). Países particularmente ricos em espécies são México e Brasil que contêm inclusive muitas espécies endêmicas ou de distribuição restrita (González 1998). As flores desta família chamam atenção principalmente pelo seu grande tamanho, sendo consideradas as maiores do mundo, juntamente com as flores de Rafflesia (Endress 1994) e também pela coloração conspícua semelhante a cor de carne, normalmente uma coloração vermelha escura salpicada com manchas brancas. De maneira característica e bem conhecida as flores de Aristolochia são altamente derivadas funcionando como armadilhas para insetos que realizam sua polinização (Knoll 1929 apud Rulik et al. 2008). Embora o gênero seja bastante diverso possui um plano básico floral relativamente estável, formado por um perianto monossimétrico, de simetria zigomorfa com apenas três sépalas unidas em um tubo longo, formando uma armadilha (Endress 1994). Semelhante a ocorrência de um mesmo plano básico, a biologia floral das espécies parece apresentar muitos aspectos em comum. Segundo Bello et al. (2006), o estudo da biologia floral é registrado desde 1923 por Cammerloher, seguido pelos trabalhos de Petch (1924) e Daumann (1959), demonstrando a ocorrência de forte protoginia. Registros da biologia floral juntamente com os de polinização revelam que os insetos são atraídos pela emissão de odores no lobo do perianto no primeiro dia de abertura das flores e as papilas presentes, forçam o caminho para que os insetos não consigam sair e fiquem aprisionados onde o néctar é secretado, no segundo dia onde não mais existe a produção de odor, os estigmas se unem impossibilitando o recebimento de pólen e as anteras se abrem liberando o pólen aos prisioneiros que são libertados (Proctor et al. 1996). O odor nesta família tem papel importante na atração de polinizadores, sendo atribuído a grande parte das espécies estudadas a presença de essências com odor desagradável, semelhante à carne em putrefação (Endress 1994, Proctor et al. 1996). As espécies de Aristolochiaceae têm uma forte relação de polinização com moscas saprófitas, que buscam as flores para depositar seus ovos ou para encontrar um parceiro reprodutivo (Sakai 2002, Rullik et al. 2008, Nakonechnaya et al. 2008). A síndrome descrita para a família é a de sapromiofilia (Faegri & van der Pijil 1979) corroborada aparentemente pela maior parte dos estudos realizados, sendo os dípteros os visitantes predominantes, além de principais polinizadores, pela análise da carga polínica (Costa & Hime 1981, Sakai 2002, Trujillo & Sérsic 2006, Nakonechnaya et al. 2008, Rulik et al. 2008). Contudo, outros visitantes, mesmo que em menor número, são também reportados, pertencentes às famílias Coleoptera, Hymenoptera, Psocoptera, Hemiptera, Neuroptera, Thysanoptera, Lepidoptera (Costa & Hime 1981, Sakai 2002, Burgess et al. 2004, Rulik et al. 2008). A autopolinização dentro de uma mesma flor (autogamia) não ocorre nas flores desta família, já que a protoginia ocorre. No entanto há registros tanto de espécies autoincompatíveis (Burgess et al. 2004) quanto de espécies auto-compatíveis (Trujillo & Sérsic 2006). Para Aristolochia gigantea, estudos são escassos, o único trabalho publicado sobre a biologia da polinização desta espécie foi realizado por Costa & Hime (1981) em planta cultivada no Jardim Botânico do Rio de Janeiro, ou seja, fora do ambiente natural. Previamente, no primeiro trabalho realizado com a espécie, na qual é feita sua descrição, infere-se como habitat natural o estado da Bahia, embora sem maiores informações sobre municípios e/ou locais (Martius & Zuccarini, 1824). Em trabalhos posteriores, confusões sobre as informações quanto a sua origem e distribuição parecem começar a ocorrer, pois em Barringer (1983) registra-se a ocorrência da planta para as florestas úmidas do Panamá e Brasil Amazônico, embora esse autor registre diferenças no material da América Central e América do Sul, sendo as flores deste último maiores. Já no trabalho de Masters (1869) a origem da planta é atribuída a locais “em montanhas” na Bahia e Minas Gerais. Trabalhos posteriores citam a origem da espécie apenas na Bahia (Bellair & Saint-Léger 1899) e na Bahia e em Minas Gerais (Rodigas 1893, Costa & Hime 1981, Capellari-Junior 1991). Segundo Capellari-Junior (1991) esta espécie ocorre em regiões do bioma caatinga, porém preferencialmente em áreas úmidas como margens de rios, matas secundárias, pastagens e bordas de estradas, e quando cultivada, desenvolve-se bem em qualquer tipo de solo. Talvez por isso haja certa confusão no registro de algumas espécies, como por exemplo, da espécie reportada por Barringer (1983) que deve ser cultivada na Amazônia (Capellari-Junior 1991). Registros de espécies são encontrados em herbários no Brasil como nos estados de São Paulo, Rio de Janeiro, Santa Catarina, Paraná, e fora do país na Costa Rica, Panamá e Estados Unidos, embora tais registros sejam atribuídos a espécies cultivadas (Costa & Hime 1981, Capellari-Junior 1991). A contradição nas informações mostra a necessidade de estudos que visem esclarecer a distribuição e origem de Aristolochia gigantea. Uma importante e útil ferramenta para analisar os padrões de distribuição geográfica é a modelagem ecológica de distribuição de nicho. Nesta abordagem, um modelo de nicho ecológico é construído, baseado nos valores de variáveis ambientais (dimensões do nicho) de localidades conhecidas e projetado em um espaço geográfico para a identificação de regiões potenciais para a ocorrência das espécies (Scott et al.2002). A aplicação desta técnica é bastante útil em caracterizar distribuições geográficas baseadas em conjuntos de dados muitas vezes incompletos, como em espécies não estudadas e que podem apresentar erros quanto a sua distribuição (Siqueira et al. 2009). Complementarmente a confusão na distribuição, o odor em Aristolochia gigantea não parece algo bem estabelecido. Capellari-Junior (1991) reportou diferenças nos registros de herbários encontrados referentes ao odor das espécies, pois em notas de plantas na região de origem (áreas de caatinga) as flores desta espécie apresentam odor de carne em putrefação, mas quando cultivadas em São Paulo as flores apresentavam odor semelhante à erva-cidreira. O estudo de Costa & Hime (1981) com a espécie, embora tenha focado apenas em características das flores como morfologia, pigmentos e polinizadores, sem tratar do sistema reprodutivo da espécie registraram seu odor como forte e adocicado, semelhante a frutas em decomposição, mas sem chegar a ser tão desagradável. Poderíamos esperar assim por algumas informações contrastantes que ou há mais de uma espécie dita como Aristolochia gigantea, ou variações podem ocorrer naturalmente na espécie, inclusive no seu odor. Observações prévias realizadas em campo por P.G. Kevan, B. F. Viana e F. O. da Silva, na Bahia, apontaram a existência de odor de citronela nas flores e nenhum visitante floral foi encontrado. Os odores desta espécie são uma mistura bastante complexa, aparentemente o odor de carne em putrefação pode ocorrer dentro do utrículo, mas o odor de citronela é encontrado no perianto (Robert Raguso pers. com.). Seria esperada então, pelo odor de putrefação (não foi observado in situ), a atração por dípteros saprófitos, mas o odor de citronela é associado normalmente como repelente de moscas. Outros visitantes, como as abelhas euglossíneas (Euglossine, Hymenoptera, Apidae) podem ser atraídas por citronela (Dodson et al. 1969, Pearson & Dressler 1985), mas poderíamos também esperar encontrar outros dípteros não saprófitos (Howlett 1912 apud Jang et al. 1997). A distância entre os indivíduos de A. gigantea pode também ser crucial para identificar padrões relacionados à disponibilidade de polinizadores e as estratégias reprodutivas da planta, ou seja, se as espécies estiverem isoladas o bastante para impedir o deslocamento dos polinizadores elas podem estar com altas taxas de autofertilização. Todavia, para acessar a maior parte da variabilidade existente da espécie, além do uso de ferramentas ecológicas, é fundamental o uso de ferramentas genéticas, por proporcionarem mais elementos para análise da estrutura populacional. O uso da genética em trabalhos de ecologia da polinização permite que elementos da história das espécies possam ser reconstruídos, unindo aspectos evolutivos e de mudanças dos grupos de polinizadores ou estratégias de polinização (Reddy et al. 2002, Pérez et al. 2006, Pérez et al. 2009), além disso, estratégias de conservação podem ser suplementadas (Crema et al. 2009). Diante das questões levantadas, da ausência de estudos em ambientes naturais com Aristolochia gigantea e principalmente pela possibilidade da relação desta espécie com uma possível mudança na síndrome de polinização prevista, provavelmente por pressões ambientais como a limitação nos “serviços” de polinização, a presente dissertação tem como objetivo principal prover melhor entendimento da diversidade de mecanismos de polinização e distribuição geográfica no gênero Aristolochia e nas angiospermas basais em geral. Assim, no primeiro capitulo iremos apresentar os resultados das investigações relacionadas ao sistema de polinização de A. gigantea e no segundo o modelo preditivo da distribuição dessa espécie baseada nas características do seu nicho. / Salvador
9

Evolution of the genus Aristolochia - Systematics, Molecular Evolution and Ecology

Wanke, Stefan 17 January 2007 (has links)
Evolution of Piperales – matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Piperales are one of the largest basal angiosperm orders with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 1,000 species), Peperomia (ca. 1,500-1,700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa representing all families (except Hydnoraceae) and all generic segregates (except Euglypha within Aristolochiaceae) of Piperales. A large number of highly informative indels are found in the Piperales trnK/matK dataset. Within a narrow region approximately 500 nt downstream in the matK coding region (CDS), a length variable simple sequence repeat (SSR) expansion segment occurs, in which insertions and deletions have led to short frame-shifts. These are corrected shortly afterwards, resulting in a maximum of 6 amino acids being affected. Furthermore, additional non-functional matK copies were found in Zippelia begoniifolia, which can easily be discriminated from the functional open reading frame (ORF). The trnK/matK sequence data fully resolve relationships within Peperomia, whereas they are not effective within Piper. The resolution contrast is correlated with the rate heterogenity between those lineages. Parsimony, Bayesian and likelihood analyses result in virtually the same topology, and converge on the monophyly of Piperaceae and Saururaceae. Lactoris gains high support as sister to Aristolochiaceae subf. Aristolochioideae, but the different tree inference methods yield conflicting results with respect to the relationships of subfam. Asaroideae. In Piperaceae, a clade formed by the monotypic genus Zippelia and the small genus Manekia (=Sarcorhachis) is sister to the two large genera Piper and Peperomia. Systematics of pipevines – Combining morphological and fast-evolving molecular characters to investigate the relationships within subfamily Aristolochioideae (Aristolochiaceae) A combined phylogenetic analysis of the Aristolochioideae was conducted based on 72 morphological characters and molecular datasets (matK gene, trnK intron, trnL intron, trnL-trnF spacer). The analysis sampled 33 species as the ingroup, including two species of Thottea and 30 species of Aristolochia and the monotypic genus Euglypha, which represent all the infrageneric taxa formally described; Saruma henryi and Asarum caudatum were used as the outgroup. The results corroborate a sister-group relationship between Thottea and Aristolochia, and the paraphyly of Aristolochia with respect to Euglypha that consequently should be included into Aristolochia. Two of the three subgenera within Aristolochia (Isotrema and Pararistolochia) are shown to be monophyletic, whereas the signal obtained from the different datasets about the relationships within subg. Aristolochia is low and conflicting, resulting in collapsed or unsupported branches. The relationship between the New World and the Old World species of subgenus Aristolochia is conflictive because morphological data support these two groups as monophyletic, whereas molecular data show the monophyletic Old World species of Aristolochia nested within the New World species. A sister group relationship is proposed between A. lindneri and pentandrous species, which suggests that a group of five species from central and southern South America (including A. lindneri) could be monophyletic and sister to Aristolochia subsection Pentandrae, a monophyletic taxon consisting of about 35 species from southern USA, Mesoamerica, and the West Indies. Colonisation, phylogeography and evolution of endemism in Mediterranean Aristolochia (Aristolochiaceae). This study provides evidence for a multiple colonisation of the western Old World from Asian ancestors within Aristolochia section Diplolobus (subsection Aristolochia and Podanthemum). Within subsection Podanthemum it is assumed, that the colonisation of the African continent happened at least two times independently. In contrast, for subsection Aristolochia, a rapid morphological radiation in the Near East (or close to this area) with subsequent star like colonisation of the different current distribution areas, which is not paralleled on the molecular level, appears to be more likely. Phylogenetic tree reconstruction is unsupported for these clades, but most clades are highly supported as monophyletic. Interestingly the Mediterranean and temperate Eurasian species, which are morphologically distinct (A. pistolochia, A. clematitis) are not clustering within the main clades, but are independent lineages. Analogue, A. rigida a species from Somalia is well-supported sister to the subsection Aristolochia. Within subsection Podanthemum the colonisation event from an Asian ancestor is clearly traceable, whereas in subsection Aristolochia the path is not traceable, since the ancestors are extinct or not present in the connecting areas. Within the Mediterranean, Near East and Caucasian species of subsection Aristolochia two morphologically and biogeographically well supported groups can be identified: the Near East/Caucasian species and the West Mediterranean species. The previous groupings for the latter, based on morphological characters, could be substantiated only partly by our results. This study provides the first phylogeny of all West Mediterranean species. In addition an independent complex is established including some micro endemic species. The phylogenetic results are discussed with respect to biogeography, and morphology, to give a first insight into the radiation and colonisation of the genus Aristolochia in the Mediterranean region. Universal primers for a large cryptically simple cpDNA microsatellite region in Aristolochia. We provide a new and valuable marker to study species relationships and population genetics in order to trace evolutionary, ecological, and conservational aspects in the genus Aristolochia. Universal primers for amplification and subsequent sequencing of a chloroplast microsatellite locus inside the trnK intron are presented. Utility of the primers has been tested in 32 species representing all clades of Aristolochia, including population studies within the A. pallida complex, A. clusii and A. rotunda. The microsatellite region is characterized as a (AnTm)k repeat of 22–438 bp containing a combination of different repeats arranged as ‘cryptically simple’. Trapped! Pollination of Aristolochia pallida Willd. in the Mediterranean A first study of the pollination biology of a Mediterranean Aristolochia species in its natural habitat is presented. 183 flowers of Aristolochia pallida were investigated, which in total contained 73 arthropods, dominated by two groups of Diptera, Sciaridae (37%) and Phoridae (19%). However, only Phoridae are regarded as potential pollinators, since pollen has been found exclusively on the body surfaces of these insects. All Phoridae belong to the genus Megaselia and are recognised as four undescribed species. The measurements of flower and insect dimensions suggest that size is an important constrain for successful pollination: 1) the insects must have a definitive size for being able to enter the flower and 2) must be able to get in touch with the pollen. Only very few insect groups found in Aristolochia pallida fulfil these size requirements. However, size alone is not a sufficient constrain as too many fly species of the same size might be trapped but not function as pollinators. Instead, specific attraction is required as otherwise pollen is lost. Since all trapped Phoridae are males, a chemical attraction (pheromones) is proposed as an additional constrain. Since A. pallida flowers are protogynous, the record of Megaselia loaded with pollen found in a flower during its female stage proves that this insect must have been visited at least one different flower during its male stage before. Further on, this observation provides strong evidence that the flowers are cross-pollinated. All these factors indicate a highly specialised pollination of Aristolochia pallida by Megaselia species.
10

Mechanismus karcinogenity a nefrotoxicity aristolochových kyselin / Mechanism of carcinogenicity and nephrotoxicity of aristolochic acids

Bárta, František January 2012 (has links)
Aristolochic acids (AA) are human carcinogens which have also very strong nephrotoxic properties. A mixture of AA is present in Aristolochiacae plant species. These plants were and still are used in traditional medicine in some countries, particularly in Asia. Aristolochic acids participate in development of two types of nephropathies. The first disease is designated as Aristolochic Acid Nephropathy (AAN), the second one is Balkan Endemic Nephropathy (BEN). Both nephropathies are associated with urothelial malignancies, which are caused by AA. One of the common features of ANN and BEN is that not all individuals exposed to AA suffer from nephropathy and tumour development. One cause for these different responses may be individual differences in the activities and expression levels of the enzymes catalyzing the biotransformation of AAI, the major toxic component of AA contained in Aristolochia species. Detailed knowledge of enzymes which participate in metabolism of AAI may contribute to elucidation of inter-individual susceptibility to AAN, BEN and later urothelial malignancies. Aristolochic acid I is either oxidative detoxicated or reductive activated by biotransformation enzymes. Reductive bioactiovation of AAI leads to formation of covalent AA-DNA adducts in organism which result in producing of...

Page generated in 0.476 seconds