• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 39
  • 36
  • 26
  • 24
  • 19
  • 18
  • 9
  • 6
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 418
  • 94
  • 70
  • 52
  • 43
  • 36
  • 33
  • 32
  • 32
  • 28
  • 27
  • 26
  • 25
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Development of Biocompatible Polymer Monoliths for the Analysis of Proteins and Peptides

Li, Yun 12 August 2009 (has links) (PDF)
Biocompatibility is an important issue for the development of chromatographic stationary phases for the analysis of biomolecules (including proteins and peptides). A biocompatible stationary phase material is a material that resists nonspecific adsorption of biomolecules and does not interact with them in a way that would alter or destroy their structures or biochemical functions. The monolithic column format is a good alternative to typical spherical particle packed columns for capillary liquid chromatography of biomacromolecules. Several novel anion-exchange polymer monoliths for the analysis of proteins were synthesized for improved biocompatibility. Two novel polymeric monoliths were prepared in a single step by a simple photoinitiated copolymerization of 2-(diethylamino)ethyl methacrylate and polyethylene glycol diacrylate (PEGDA), or copolymerization of 2-(acryloyloxy)ethyl trimethylammonium chloride (AETAC) and PEGDA, in the presence of selected porogens. The resulting monoliths contained functionalities of diethylaminoethyl (DEAE) as a weak anion exchanger and quaternary amine as a strong anion exchanger, respectively. An alternative weak anion exchange monolith with DEAE functionalities was also synthesized by chemical modification after photoinitiated copolymerization of glycidyl methacrylate (GMA) and PEGDA. The dynamic binding capacities of the three monoliths were comparable or superior to values that have been reported for various other monoliths. Chromatographic performances were also similar to those provided by a modified poly(GMA-co-ethylene glycol dimethacrylate) monolith. Separations of standard proteins were achieved under gradient elution conditions using these monolithic columns. This work represents a successful attempt to prepare functionalized monoliths via direct copolymerization of monomers with desired functionalities. Compared to earlier publications, laborious surface modifications were avoided and the PEGDA crosslinker improved the biocompatibility of the monolithic backbone. Protein separations by capillary size exclusion chromatography (SEC) require a monolith that is biocompatible, has sufficient pore volume, has the appropriate pore size distribution, and is rigid. Most polymer monoliths have not possessed a biomodal pore-size distribution, i.e., especially with one distribution in the macropore region and the other in the mesopore region. Furthermore, non-specific adsorption of proteins in these stationary phases has persisted as a major unresolved problem. To overcome these difficulties, a porous poly[polyethylene glycol methyl ether acrylate (PEGMEA)-co-PEGDA] monolith which can resist adsorption of both acidic and basic proteins when using an aqueous buffer without any organic solvent additives was developed. Based on this biocompatible monolith, surfactants were introduced as porogens with the hope of significantly increasing the mesopore volume within the polymer. Two types of surfactants were studied, including poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO and Brij. Pore size distributions were examined using a well-defined molecular weight range series of proteins and peptides by inverse size exclusion chromatography, which indicated relatively large volume percentages of mesopores and micropores. The two new monoliths demonstrated different SEC behaviors, low nonspecific adsorption of proteins, and high mechanical rigidity. High density lipoprotein (HDL) is a heterogeneous class of lipoprotein particles with subspecies that differ in apolipoprotein and lipid composition, size, density, and charge. In this work, I developed a new capillary SEC method for size separation of native HDL particles from plasma using a capillary packed with BioSep-SEC-4000 particles, Three major sizes of HDL particles were separated. Additionally, capillary SEC and capillary strong anion-exchange chromatography of non-delipidated HDL were accomplished using poly(PEGMEA-co-PEGDA) and poly(AETAC-co-PEGDA) monoliths. These new LC methods using packed and monolithic stationary phases provided rapid separation of HDLs and excellent reproducibility.
282

The dependence of chromatographic conditions for separation of oligonucleotides in different AEX-HPLC columns / Kromatografiska betingelsers påverkan på separation av oligonukleotider med olika anjonbytarkolonner

Nylander, Julia January 2020 (has links)
Oligonucleotides (ONs) are widely used in different applications in life science, forensic, in i.e. family tree DNA test for humans and in diagnostic applications in several fields. The use of ONs in biopharmaceutical therapeutic areas also generates new challenges handling more complex molecules which results in the need of further developed analytical techniques. Anion exchange chromatography (AEX) is a common separation technique for biomolecules and is based on charge attraction between the analyte and the stationary phase. The chromatographic system is complex and often high pH and a high salt concentration is needed for the elution to occur, which in some systems can be corrosive for both the column and the instrument. The aim of this study was to evaluate new mobile phase compositions with lower salt concentrations, organic modifier, and usage of a buffer to increase the control of the pH. This was done by evaluation of three columns developed for AEX and uses different chemical and methodical modification of the mobile phase to control the retention to the stationary phase. The influence of pH, temperature, and methanol (MeOH) content in the buffer were studied by evaluation of resolution, asymmetry, and efficiency responses. Three oligonucleotides with 16, 18 and 19 T-bases in the chain were used in the study of three AIE columns. High pH, elevated temperature and the addition of an organic modifier were used for unfolding of the oligonucleotide chain and generating more efficient separations. Other parameters such as gradient slope and initial concentration of the eluting buffer were also studied, and the findings clearly show that the chromatographic conditions influence the resolution, asymmetry, and efficiency. / Oligonukleotider används i flera olika branscher som forensik och inom life sience till diagnostiska och medicinska applikationer. Eftersom applikationsområdena ökar och forskningen går framåt så blir molekylerna mer komplexa, vilket i sin tur kräver att dom analytiska teknikerna också behöver utvecklas. En vanlig separationsteknik för biomolekyler är anjonbyteskromatografi, då den bygger på laddningsattraktion mellan analyten och den stationära fasen. Oligonukleotider har en negativ nettoladdning på grund av den negativt laddade fosfatgruppen i kedjan. Genom att modifiera de kemiska egenskaperna i den mobila fasen är det därför möjligt att i viss grad kontrollera retentionen till den stationära fasen.       Då det kromatografiska systemet är komplext och det ofta behövs högt pH och/eller en hög saltkoncentration för eluering av analyten kan det i vissa system verka korrosivt för både kolonnen och instrumentet. Det initiala målet med detta arbete var att ta fram olika mobila faser med lägre saltkoncentration, organiskt lösningsmedel och användande av buffer för att kontrollera pH. Detta gjordes genom att utvärdera den kromatografiska kapaciteten hos tre olika anjonbyteskolonner samt använda olika kemiska- och metodiska modifieringar av den mobila fasen för att kontrollera analytens retention. Mer specifikt så kommer påverkan av pH, temperatur och innehåll av metanol i den mobila fasen att studeras genom att utvärdera upplösning, asymmetri och effektivitet i de erhållna kromatogrammen. Analytmixen innehåller tre olika oligonukleotider vilka består av 16, 18 eller 19 T-baser i sekvensen. Genom att höja pH, temperatur och innehåll av metanol i den mobila fasen påvisas mer effektiva separationer. Andra faktorer som gradientlutning och initialkoncentration av den eluerande fasen studeras också med goda resultat när det gäller dess påverkan på upplösning, asymmetri och effektivitet.
283

Exotic Properties of Metal Organic Systems: Single Molecule Studies

Sarkar, Sanjoy 10 September 2021 (has links)
No description available.
284

In-plant And Distribution System Corrosion Control For Reverse Osmosis, Nanofiltration, And Anion Exchange Process Blends

Jeffery, Samantha 01 January 2013 (has links)
The integration of advanced technologies into existing water treatment facilities (WTFs) can improve and enhance water quality; however, these same modifications or improvements may adversely affect finished water provided to the consumer by public water systems (PWSs) that embrace these advanced technologies. Process modification or improvements may unintentionally impact compliance with the provisions of the United States Environmental Protection Agency’s (USEPA’s) Safe Drinking Water Act (SDWA). This is especially true with respect to corrosion control, since minor changes in water quality can affect metal release. Changes in metal release can have a direct impact on a water purveyor’s compliance with the SDWA’s Lead and Copper Rule (LCR). In 2010, the Town of Jupiter (Town) decommissioned its ageing lime softening (LS) plant and integrated a nanofiltration (NF) plant into their WTF. The removal of the LS process subsequently decreased the pH in the existing reverse osmosis (RO) clearwell, leaving only RO permeate and anion exchange (AX) effluent to blend. The Town believed that the RO-AX blend was corrosive in nature and that blending with NF permeate would alleviate their concern. Consequently, a portion of the NF permeate stream was to be split between the existing RO-AX clearwell and a newly constructed NF primary clearwell. The Town requested that the University of Central Florida (UCF) conduct research evaluating how to mitigate negative impacts that may result from changing water quality, should the Town place its AX into ready-reserve. iv The research presented in this document was focused on the evaluation of corrosion control alternatives for the Town, and was segmented into two major components: 1. The first component of the research studied internal corrosion within the existing RO clearwell and appurtenances of the Town’s WTF, should the Town place the AX process on standby. Research related to WTF in-plant corrosion control focused on blending NF and RO permeate, forming a new intermediate blend, and pH-adjusting the resulting mixture to reduce corrosion in the RO clearwell. 2. The second component was implemented with respect to the Town’s potable water distribution system. The distribution system corrosion control research evaluated various phosphate-based corrosion inhibitors to determine their effectiveness in reducing mild steel, lead and copper release in order to maintain the Town’s continual compliance with the LCR. The primary objective of the in-plant corrosion control research was to determine the appropriate ratio of RO to NF permeate and the pH necessary to reduce corrosion in the RO clearwell. In this research, the Langelier saturation index (LSI) was the corrosion index used to evaluate the stability of RO:NF blends. Results indicated that a pH-adjusted blend consisting of 70% RO and 30% NF permeate at 8.8-8.9 pH units would produce an LSI of +0.1, theoretically protecting the RO clearwell from corrosion. The primary objective of the distribution system corrosion control component of the research was to identify a corrosion control inhibitor that would further reduce lead and v copper metal release observed in the Town’s distribution system to below their respective action limits (ALs) as defined in the LCR. Six alternative inhibitors composed of various orthophosphate and polyphosphate (ortho:poly) ratios were evaluated sequentially using a corrosion control test apparatus. The apparatus was designed to house mild steel, lead and copper coupons used for weight loss analysis, as well as mild steel, lead solder and copper electrodes used for linear polarization analysis. One side of the apparatus, referred to as the “control condition,” was fed potable water that did not contain the corrosion inhibitor, while the other side of the corrosion apparatus, termed the “test condition,” was fed potable water that had been dosed with a corrosion inhibitor. Corrosion rate measurements were taken twice per weekday, and water quality was measured twice per week. Inhibitor evaluations were conducted over a span of 55 to 56 days, varying with each inhibitor. Coupons and electrodes were pre-corroded to simulate existing distribution system conditions. Water flow to the apparatus was controlled with an on/off timer to represent variations in the system and homes. Inhibitor comparisons were made based on their effectiveness at reducing lead and copper release after chemical addition. Based on the results obtained from the assessment of corrosion inhibitors for distribution system corrosion control, it appears that Inhibitors 1 and 3 were more successful in reducing lead corrosion rates, and each of these inhibitors reduced copper corrosion rates. Also, it is recommended that consideration be given to use of a redundant single-loop duplicate test apparatus in lieu of a double rack corrosion control test apparatus in experiments where pre-corrosion phases are vi implemented. This recommendation is offered because statistically, the control versus test double loop may not provide relevance in data analysis. The use of the Wilcoxon signed ranks test comparing the initial pre-corroding phase to the inhibitor effectiveness phase has proven to be a more useful analytical method for corrosion studies.
285

Design, Synthesis, and application of cross-reactive fluorescent macrocyclic supramolecular sensors for detection and quantitation of phosphates and their mixtures

Radujevic, Aco 19 December 2022 (has links)
No description available.
286

Development of Iron-based Oxyfluoride Cathodes for High Energy Density All-Solid-State Fluoride-ion Batteries / 高エネルギー密度全固体フッ化物電池用鉄系酸フッ化物正極の開発

Wang, Yanchang 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(人間・環境学) / 甲第24710号 / 人博第1083号 / 新制||人||253(附属図書館) / 2022||人博||1083(吉田南総合図書館) / 京都大学大学院人間・環境学研究科相関環境学専攻 / (主査)教授 内本 喜晴, 教授 田部 勢津久, 教授 吉田 鉄平, 教授 雨澤 浩史 / 学位規則第4条第1項該当 / Doctor of Human and Environmental Studies / Kyoto University / DFAM
287

Materials and Strategies in Optical Chemical Sensing

Palacios, Manuel A. 10 December 2008 (has links)
No description available.
288

I. FLOW INJECTION CAPILLARY ELECTROPHORESIS USING ON-LINE ENZYMATIC AND DYE INTERACTION REACTIONS II. MINI—SOLID PHASE EXTRACTION OF PHARMACEUTICALS AND PHOSPHOLIPIDS IN CONJUNCTION WITH NANO-ELECTROSPRAY MASS SPECTROMETRY

Qi, Lining 28 July 2003 (has links)
No description available.
289

VIMENTIN IS A PHOSPHORYLATED TARGET OF MCP-1-INDUCED PKCβ ACTIVATION AND AN ENDOGENOUS LIGAND FOR THE INNATE IMMUNE RECEPTOR DECTIN-1

Thiagarajan, Praveena S. January 2010 (has links)
No description available.
290

The Role of Nucleotide Signaling in the Regulation of ICl,swell in Human 1321N1 Astrocytoma Cells

Wenker, Ian C. 08 May 2009 (has links)
No description available.

Page generated in 0.051 seconds