• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • 1
  • Tagged with
  • 19
  • 19
  • 11
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Temporal trends in West Antarctic accumulation rates: evidence from observed and simulated records

Burgener, Landon Kelly 05 July 2012 (has links) (PDF)
Reconstructed snow accumulation rate observations from five new firn cores show a statistically significant negative trend in accumulation rates over the past four decades across the central West Antarctic ice sheet. A negative temporal trend in accumulation is unexpected in light of rising surface temperatures and simulations run by GCMs. Both the magnitude of the mean accumulation rates and the range of interannual variability observed in the new records compares favorably to older records, suggesting that the new accumulation rate records may serve as a regional proxy for recent temporal trends in West Antarctic accumulation rates. The observed negative trend is likely the result of Southern Hemisphere high-latitude internal atmospheric dynamics, dominated by changes in the austral fall season. The well-documented positive trend in the Southern Annular Mode causes a low pressure center to form over the Amundsen Sea, which in turn produces lower accumulation rates across the western portion of the West Antarctic ice sheet. The new accumulation rate records are compared to several models/reanalyses to test the skill of simulated accumulation rate predictions. While the models/reanalyses and the new observations agree well in both mean and variability, the simulated records do not capture the full negative trend observed in the reconstructed records.
12

The Influence of Tropical Sea Surface Temperature Variability on Antarctic Climate During the 20th Century

Garberoglio, Michael J. 05 October 2018 (has links)
No description available.
13

The influence of the quasi-biennial oscillation on the stratospheric polar vortices

Watson, Peter Alan Gazzi January 2013 (has links)
The mean strengths of the wintertime stratospheric polar vortices are known to be related to the phase of the quasi-biennial oscillation (QBO) in the tropical stratosphere from circulation statistics - the "Holton-Tan relationship". The principal topic of this thesis is improving understanding of the mechanism behind the QBO's influence. Following the example of previous studies, the QBO influence on the Northern Hemisphere (NH) extratropics on monthly time scales in an observational reanalysis is examined, and is shown to closely resemble the stratospheric Northern annular mode (NAM). It is argued that this may not be informative about the mechanism, as the response could be NAM-like for many different mechanisms. It is suggested that examining the transient response of the NH extratropics to forcing by the QBO would be much more informative, particularly on time scales of a few days. In a primitive equation model of the middle atmosphere, the long-term stratospheric NH response to imposed zonal torques is often found to be NAM-like under perpetual January conditions, with wave feedbacks making a very important contribution. However, the response in runs with a seasonal cycle is not NAM-like. Investigation of the transient responses indicates the wave feedbacks are qualitatively similar in each case but only strong enough under perpetual January conditions to make the long-term response NAM-like. This supports the hypothesis that feedbacks from large-scale dynamics tend to make the stratospheric response to arbitrary forcings NAM-like, and therefore indicates that the long-term response is not generally useful for understanding forcing mechanisms. Examining the short-term transient response to known torques is found to be more successful at inferring information about the torques than several other previously proposed methods. Finally, the short-term transient response of the NH extratropics to forcing by the easterly QBO phase in a general circulation model is found to be consistent with the proposed mechanism of Holton and Tan (1980), indicating that this mechanism plays a role in the Holton-Tan relationship.
14

Rôle des tourbillons océaniques dans la variabilité récente des flux air-mer de CO2 dans l'océan Austral / Impact of oceanic eddy activity on the variability of CO2 air-sea fluxes in the Southern Ocean.

Dufour, Carolina 06 December 2011 (has links)
L'océan Austral joue un rôle crucial dans la régulation du système climatique en absorbant de grandes quantités de CO2 atmosphérique. Toutefois de nombreuses incertitudes demeurent quant à l'évolution récente du puits de carbone austral notamment en raison du manque d'observations et des lacunes des modèles océaniques dans la représentation de processus dynamiques comme les tourbillons. Depuis quelques décennies notamment, l'efficacité du puits de carbone austral diminuerait en raison d'une intensification des vents liée à une tendance positive du Mode Annulaire Austral (SAM). L'objectif de ces travaux de thèse est de décrire et comprendre la variabilité spatiale et temporelle récente des flux air-mer de CO2 dans l'océan Austral. Pour cela, des simulations de sensibilité aux phases positives du SAM sont réalisées dans une configuration régionale de l'océan Austral (sud de 30°S), basée sur un modèle couplé dynamique-biogéochimie forcé par l'atmosphère et résolvant partiellement la méso-échelle océanique. Dans l'océan Austral, la réponse des flux de CO2 au SAM correspond à un dégazage intense de CO2 dans la zone antarctique dû à une augmentation des concentrations de surface de carbone inorganique dissous (DIC). Cette augmentation est pilotée par la dynamique de la couche de mélange et alimentée par un transport méridien de DIC qui résulte essentiellement de la compétition entre circulation induite par les vents et par les méandres stationnaires. Ces travaux montrent l'apport d'une augmentation de la résolution numérique des modèles pour la simulation des flux de CO2. / By taking up large amounts of atmospheric CO2, the Southern Ocean helps to regulate the climate system. Southern Ocean carbon sink is poorly constrained, in part because data coverage is sparse and also because ocean models that have been used in such assessments fail to explicitly resolve key physical features such as mesoscale eddies. In recent decades, the growth of the Southern Ocean carbon sink may have been partly counteracted due to a loss of natural CO2 from the ocean driven by an intensification of westerlies, related to a positive trend in the Southern Annular Mode (SAM). This thesis focuses on documenting and understanding recent spatial and temporal variability of air-sea CO2 fluxes in the Southern Ocean. Sensitivity to positive phases of the SAM are tested by making simulations with a regional model of the Southern Ocean (south of 30°S) that couples biogeochemistry to the dynamics, is forced by atmosphere reanalysis data, and partially resolves the mesoscale. The resulting response of Southern Ocean CO2 fluxes to the SAM is dominated by a strong CO2 efflux to the atmosphere from the Antarctic Zone due to an increase in surface dissolved inorganic carbon (DIC). This increase is driven by the mixed-layer dynamics and is supplied by a meridional transport of DIC, a competition between the wind-driven circulation and the standing eddy-induced circulation. This work discusses the effect of increasing model resolution on simulated air-sea CO2 fluxes.
15

Using the NCAR CAM 4 to Confirm SAM’s Modulation of the ENSO Teleconnection to Antarctica and Assess Changes to this Interaction during Various ENSO Flavor Events

Wilson, Aaron Benjamin January 2013 (has links)
No description available.
16

El Niño Southern Oscillation teleconnections and their effects on the Amundsen Sea region

Yiu, Yu Yeung Scott January 2018 (has links)
El Niño Southern Oscillation events have global implications both climatologically and socio-economically. One such climatological teleconnection is manifested in the Amundsen Sea region (ASR). The Amundsen sea low (ASL) is the dominant low pressure system located around the ASR and is important to the climate of Western Antarctica. Therefore, it is important to understand the ASL and any phenomena that may affect it. This thesis focuses on the ENSO--ASR teleconnection under El Niño conditions and the mechanism behind it. The ENSO--ASR teleconnection was explored using the UM version 8.4 (HadGEM3) model. Time--slice experiments with various magnitudes of idealised perpetual ENSO events are imposed. Two sets of `switch on' experiments in which tropical Pacific SSTs were ramped up were also carried out to investigate the transient nature of the teleconnection. The seasonality of the ENSO--ASR teleconnection is known from previous studies to be stronger in winter compared to summer. The mechanism behind the seasonality was explored using the time--slice experiments. The seasonality is found to originate from the seasonal differences in the Southern Hemispheric jets. As the subtropical jet is only present in austral winter, Rossby wave source anomalies can only be generated in the mid--latitudes in winter. Furthermore, the propagation of the Rossby waves is not possible in summer due to the strong polar front jet. The lack of the source and propagation in summer explains the weaker ENSO--ASR teleconnection. A flowchart summarising the mechanism was created and then verified by the transient runs. The linearity of the ENSO--ASR teleconnection within El Niño has not been previously investigated. This is mainly due to insufficient reanalysis data available to overcome the high internal variability in the ASR. In this thesis, the linearity of the teleconnection under El Niño is studied using the time--slice runs. The results indicate linearity (within errorbars) for both the summer and winter seasons up to historically maximum El Niños. However, under extreme El Niños (beyond historic records) in winter, the teleconnection is no longer linear. The UPSCALE dataset was used to investigate the effects of horizontal resolution on the simulation of the ASL climatological state and the ENSO--ASR teleconnection. The UPSCALE dataset consists of ensembles of HadGEM3 simulations at three different horizontal resolutions. The high resolution model was found to better simulate the ASL while the low resolution model was found to better simulate the ENSO--ASR teleconnection.
17

Observations of solar wind related climate effects in the Northern Hemisphere winter

Maliniemi, V. (Ville) 21 December 2016 (has links)
Abstract This thesis studies the long-term relation between the solar wind driven energetic particle forcing into the atmosphere and the tropospheric circulation in the Northern Hemisphere winter. The work covers the period of more than one hundred years since the turn of the 20th century to present. The thesis makes a statistical analysis of satellite measurements of precipitating energetic electrons, sunspot number data and geomagnetic activity, and compares them with temperature and pressure measurements made at the Earth's surface. Recent results, both observational and from chemistry climate models, have indicated significant effects in the Earth's middle atmosphere due to the energetic electrons precipitating from the magnetosphere. These effects include the formation of reactive hydrogen and nitrogen oxides in the high latitude mesosphere and the depletion of ozone caused by them. Ozone is a radiatively active and important gas, which affects the thermal structure and dynamics of the middle atmosphere. Accordingly, the depletion of ozone can intensify the large scale stratospheric circulation pattern called the polar vortex. Winter weather conditions on the surface have been shown to be dependent on the polar vortex strength. This thesis shows that there is a significant relation between the average fluxes of medium energy (ten to hundred keVs) precipitating electrons and surface temperatures in parts of the Northern Hemisphere in winter time. Temperatures are positively correlated with electron fluxes in North Eurasia and negatively correlated in Greenland during the period 1980-2010 which is covered by direct satellite observations of precipitating particles. This difference is especially notable when major sudden stratospheric warmings and the quasi-biennial oscillation (QBO), which both are known to affect the polar vortex strength, are taken into account. When extended to the late 19th century, the analysis shows that a similar temperature pattern is predominated during the declining phase of the sunspot cycle. The high speed solar wind streams and energetic particle precipitation typically maximize also at the declining phase of the solar cycle. This specific temperature pattern is related to the variability of the northern annular mode (NAM), which is the most significant circulation pattern in the Northern Hemisphere winter. Before the space era, geomagnetic activity measured by ground observations can be used as a proxy for energetic particle precipitation. Earlier studies have found a significant positive correlation between geomagnetic activity and NAM since the 1960s. We find that, when the QBO measured at 30 hPa height is in the easterly phase, a positive correlation is extended to the beginning of 1900s. We also show that high geomagnetic activity causes a stronger effect in the Northern Hemisphere winter than high sunspot activity, especially in the Atlantic and Eurasia. A comprehensive knowledge of the Earth's climate system and all its drivers is crucial for the future projection of climate. Solar variability effects have been estimated to produce only a small factor to the global climate change. However, there is increasing evidence, including the results presented in this thesis, that the different forms of solar variability can have a substantial effect to regional and seasonal climate variability. With this new evidence, the solar wind related particle effects in the atmosphere are now gaining increasing attention. These effects will soon be included in the next coupled model inter comparison project (CMIP6) as an additional solar related climate effect. This emphasizes the relevance of this thesis.
18

Antarctic Station-based Pressure Reconstructions from 1905-2011 using Principal Component Regression

Lee, Ming Yeung 13 June 2013 (has links)
No description available.
19

Réponse des masses d'eau intermédiaires et modales de l'océan Austral au mode annulaire austral : les processus en jeu et rôle de la glace de mer / Antarctic Intermediate and Subantarctic Mode waters response to the Southern Annular Mode : processes involved and the sea-ice role

Mainsant, Gildas 28 November 2014 (has links)
Les tendances climatiques récentes montrent un réchauffement et un adoucissement des couches de surface dans la région du courant circumpolaire antarctique (ACC).Sur la même période, les vents d'ouest pilotant la circulation de l'océan Austral ont significativement augmentés. Cette augmentation est en partie liée à l'intensification du mode annulaire austral (SAM), principal mode de variabilité atmosphérique au sud de 20°S. Dans cette thèse, on s'intéresse à comprendre les effets de la tendance positive du SAM sur les propriétés des masses d'eau formées dans la région de l'ACC.A cette fin, on met en place une stratégie de simulations régionales couplées océan-glace de mer et forcées par une série de scénarios atmosphériques perturbés. Les scénarios atmosphériques sont construits à partir de réanalyses atmosphériques afin de décrire les différentes composantes (dynamiques et thermodynamiques) des changements liés au SAM.En réponse à l'intensification du SAM, les simulations montrent une forte salinisation de la couche de mélange océanique ainsi que des eaux modales (SAMW) et intermédiaires (AAIW).L'essentiel de ces changements peut être attribué aux composantes dynamiques du SAM. Dans les régions saisonnières englacées, les composantes thermodynamiques du SAM peuvent jouer un rôle important (en particulier en mer d'Amundsen et en mer de Weddell). Les simulations montrent également le rôle clef joué par la glacede mer dans la médiation des changements atmosphériques vers l'océan intérieur. Ces résultats de simulations suggèrent que le SAM ne serait pas le seul pilote des tendances climatiques récentes dans l'océan Austral. / Recent climate trends show a warming and freshening of the surface layers in the region of the Antarctic Circumpolar Current (ACC). Over the same period, the westerlies driving the circulation of the Southern Ocean have significantly increased. This increase is partly due to the intensification of the Southern Annular Mode (SAM), the main mode of atmospheric variability south of 20°S. In this thesis, we are interested in understanding the effects of the positive trend of the SAM onto the properties of water masses formed in the region of the ACC. To do so, we implement a strategy of regional coupled ocean-sea ice simulations forced by a series of atmospheric disturbance scenarios.These scenarios are constructed from atmospheric reanalyses in order to describe the various components (dynamic and thermodynamic) of the changes related to the SAM. In response to the increase of the SAM, the simulations show a significant salinification of the ocean mixed layer and of the mode water (SAMW) and intermediate water (AAIW).Most of these changes can be attributed to the dynamic components of the SAM. In Seasonal Ice Zone, the thermodynamic components of the SAM can play an important part (especially in Amundsen Sea and Weddell Sea). The simulations also show the key role played by sea ice in mediating atmospheric changes toward the interior ocean.These simulation results suggest that SAM is not the only driver of recent climate trends in the Southern Ocean.

Page generated in 0.0343 seconds