Spelling suggestions: "subject:"anodisierung"" "subject:"anodisierungs""
1 |
Titanoxidnanotubes und ihre Anwendung als Drug-Release-System / Titanium nanotubes and its application for drug-release-systemsHage, Felix January 2010 (has links) (PDF)
Infektionen medizinscher Titanoberflächen stellen ein aktuelles Problem in der rekonstruktiven Medizin dar. Dabei wird oft versucht, diesem Problem mit systemischer Antibiotikaanwendung zu begegnen, die jedoch Resistenzentstehung begünstigt und am Ort der Infektion nur einen oft unzureichenden Wirkspiegel ermöglicht. Eine mögliche Verbesserung wir hierbei in lokaler Wirkstofffreisetzung gesehen. Gegenstand dieser Arbeit war die Modifikation medizinischer Titanoberflächen mittels Anodisierung in fluoridhaltigen Elektrolyten und die Abschätzung ihres Potentials hinsichtlich der Einlagerung und der Freisetzung ausgewählter antibakteriell wirksamer Substanzen. Durch die Anodisierung der Titanoberflächen konnten Titannanotubes aus Titanoxiden mit Röhrenlängen von bis zu 6,54 m und Röhrendurchmessern von bis zu 160 nm erzeugt werden. Als Modellwirkstoffe wurden das noch heute als Reserveantibiotikum gegen manche Problemkeime geltende Chemotherapeutikum Vancomycin, sowie Silber als Element mit breiter antibakterieller Wirkung, verwendet. Es konnte gezeigt werden, dass durch die Oberflächenvergrößerung, die sich aus der Entstehung von nanotubeförmigem Titanoxid ergab, im Vergleich zu nicht anodisierten Referenzproben um bis zu 447 % mehr Wirkstoff eingelagert werden konnte. In der Freisetzungskinetik von Vancomycin zeigten sich oberflächenabhängig deutliche Unterschiede. Dabei setzten Titanoberflächen, die in einem Elektrolyten auf Wasserbasis anodisiert worden waren, den adsorbierten Wirkstoff schneller frei als die Referenzproben, während das Vancomycin auf Oberflächen, die in einem Elektrolyten auf Ethylenglycolbasis modifiziert worden waren, deutlich retardiert über einen Zeitraum von circa 305 Tagen freigesetzt wurde. Des weiteren wurde Silber in Proben eingelagert, die in einem Elektrolyten auf Wasserbasis anodisiert worden waren. Auch für Silber resultierte eine deutliche Steigerung der Gesamtmenge des adsorbierten Wirkstoffs um bis zu 229 %. Dabei war seine Freisetzung, verglichen mit der Referenzprobe, deutlich verzögert. Durch die Anodisierung der Titanproben in fluoridhaltigen Elektrolyten konnten Oberflächen erzeugt werden, die entsprechend ihrer Morphologie verschiedene Wirkstoffbeladungen und Freisetzungskinetiken ermöglichen. Hinsichtlich der unterschiedlichen Anforderungen in der klinischen Medizin nach Abgabemenge und Abgabekinetik antibakteriell wirksamer Substanzen zur postoperativen Infektionsprävention offerieren diese Oberflächenmodifikationen ein hohes Potential für die Erzeugung schnell verfügbarer und kostengünstiger Drug-Release-Systeme. / Infection of medical titanium surfaces is one important problem in modern medicine, especially orthepedics and dentistry. In the present work titanium surfaces were modified by anodisation. Titanium nanotube formations of different shape were obtained. These surfaces were modified with example drugs (vancomycin and silver ions) for drug-release. Drug-release was measured and compered.
|
2 |
Anodisierungseigenschaften von gesputterten Aluminiumdünnschichten zur optimierten Herstellung von plasmonischen NanorodarraysPatrovsky, Fabian 20 December 2017 (has links) (PDF)
Im Bereich opto-elektronischer Sensortechnik ist ein eindeutiger Trend hin zu immer kleineren Bauelementen und immer spezifischeren Messanwendungen zu erkennen. Plasmonische Materialien auf der Basis von Nanostrukturen bieten sich hierbei hervorragend für dieses Aufgabenfeld an. Deren optische Absorbanzpeaks lassen sich über die geometrischen Parameter der Nanostrukturen einfach und präzise steuern und reagieren äußerst empfindlich auf Brechungsindexänderungen im Umgebungsmedium. Die Herstellung von aufrecht stehenden, teppichartig angeordneten Nanorods auf Basis von anodisierten Aluminiumoxidmatrizen bietet als skalierbares Bottom-up-Verfahren eine einzigartige Kombination aus Prozessgeschwindigkeit, Steuerbarkeit und Kosteneffizienz.
In der vorliegenden Dissertation wurde untersucht, wie sich verschiedene Sputterparameter während der Herstellung von Aluminiumdünnschichten auf deren Anodisierungseigenschaften, sowie die anschließende Porenbefüllung und die plasmonischen Eigenschaften des so erzeugten Materials auswirken. Hierzu wurde reines Aluminium bei verschiedenen Sputterleistungen und -raten abgeschieden und hinsichtlich seiner Oberflächenkonfiguration und Prozessierbarkeit im bereits etablierten Nanorodproduktionsverfahren untersucht. Gleichwohl fanden Versuche statt, Aluminiumschichten mit einer schwachen Siliziumlegierung sowie durch reaktives Sputtern mit Sauerstoff voroxidiertes Aluminium zu anodisieren und für die Nanorodherstellung zu nutzen. Als typisches Ergebnis dieser Versuche zeigt sich eine deutliche Verbesserung des Anodisierungs- und Abscheideverhaltens, wenn die Sputterparameter so gewählt werden, dass eine möglichst feinkristalline Schicht abgeschieden wird.
Während die Variation der Sputterleistung nur in einer mäßigen Verbesserung und die Siliziumlegierung sogar in einer Verschlechterung der optischen Eigenschaften resultieren, zeigt sich die Sauerstoffzugabe als äußerst vorteilhaft für den Herstellungsprozess sowie die plasmonischen Eigenschaften der fertigen Strukturen. Hierbei weisen Aluminiumschichten mit einem Sauerstoffanteil von 10 22 at.% die gleichmäßigste Anodisierung sowie die schmalsten Plasmonenresonanzpeaks auf, bei gleichzeitig hoher Reproduzierbarkeit. Für derartige Proben konnte eine annähernd vollständige Porenbefüllung erreicht werden. Weiterhin ist die Breite der Plasmonenresonanz hier vergleichbar mit der eines simulierten, defektfreien Nanorodarrays mit perfekt hexagonaler Nanorodanordnung, sodass von einer deutlichen Optimierung gesprochen werden kann, welche nun weitere Untersuchungen an diesem System oder sogar eine großtechnische Produktion ermöglicht
Letztendlich offenbart eine quantitative Analyse der Strom-Zeit-Kurve der Anodisierung, dass diese in Form und Ausprägung mit der Güte der plasmonischen Eigenschaften der so produzierten Strukturen korreliert. Somit bietet sich diese als schnelles und günstiges Verfahren zur Qualitätskontrolle in einem sehr frühen Prozessstadium an. / Optical sensing witnesses an increasing trend towards smaller components and more specific applications. Nanostructure-based materials excellently fulfil these kinds of task. Their optical absorbance peaks are easily and precisely controllable by changing the structures‘ geometrical parameters, and have shown to be highly sensitive to refractive index changes of the surrounding medium. The fabrication of free-standing arrays of metallic nanorods based on anodised aluminium oxide matrices as a scalable bottom-up process offers a unique combination of throughput in production, process control and cost efficiency.
The scope of the present dissertation thesis is the exploration of different sputtering parameters and techniques for the fabrication of aluminium thin-films, their influence on the anodisation properties as well as subsequent pore filling, and of course the optical properties of the final plasmonic structure. For this, pure aluminium was deposited at different sputtering powers and rates, and was investigated regarding its surface configuration as well as its usability within the well-established nanorod fabrication process. Similarly, attempts were made to anodise aluminium alloyed with small quantities of silicon as well as substoichiometric aluminium oxide, which was prepared by reactive sputtering under partial oxygen pressure. As a typical result of these studies, it was found that a considerable improvement of anodisation and electroplating behaviour could be achieved, provided the sputtering conditions were chosen such that the deposited films\' crystal size becomes as small as possible.
While the variation of the sputtering power lead only to a marginal improvement and the silicon admixture even deteriorated the sample quality, the use of partially oxidised aluminium layers proved to be highly advantageous for the fabrication process as well as the plasmonic properties of the final structures. The optimal oxygen content was found to be 10 22 at.%, with these samples showing the most regular anodisation behaviour, the smallest absorbance peak width, and at the same time a high reproducibility. Furthermore, the peak width of these samples is comparable to that of simulated, defect-free nanorod arrays in a perfect hexagonal arrangement. These fabrication parameters can therefore be viewed as highly optimised and well-suited for further investigations of this material or even a large-scale production process.
Finally, a quantitative analysis of the current-time-curve of an anodisation process reveals a correlation between its characteristics and the samples’ plasmonic qualities. Hence, the analysis of this curve may be used as a fast and cheap method of quality control at the early stages of the fabrication process.
|
3 |
Mechanically Flexible and Electrically Stable Organic Permeable Base TransistorsDollinger, Felix 29 November 2019 (has links)
Organic transistors have attracted significant research interest in recent years due to their promises of mechanical flexibility and low-cost fabrication. Possible innovative applications include wearable electronic sensor systems, as well as mass-produced, inexpensive localization tags for logistics. However, the limited charge carrier mobility in organic semiconductor materials, contact resistance at the organic-metal interface and comparably long transistor channel lengths result low-speed organic transistors and low current densities compared with conventional inorganic transistors. The organic permeable base transistor (OPBT) is a disruptive transistor architecture that overcomes some of these drawbacks by providing a vertical transistor channel, which is much shorter than in lateral channel organic transistor devices.
Consequently, it has been shown to be the fastest organic transistor to date with a transition frequency of 40 MHz, driving currents up to the kA/cm^2 regime. Nevertheless, the OPBT has not yet reached the application stage and its production has been limited to lab-scale devices deposited onto rigid glass substrates. Issues include low yield, large leakage currents, and unknown reliability of the devices.
This work addresses these problems by transferring OPBTs to flexible polymer substrates and introducing a controlled and easily reproducible manufacturing technique for the crucial base oxide layer by electrochemical anodization. The anodization technique allows the creation of defined insulating layers, leading to devices with significantly reduced leakage currents and consequently very large transmission factors of 99.9996%. An investigation into the electrical stability of OPBTs shows that the devices are suitable as switching transistors in active matrix organic light emitting displays (AMOLED). In this application, the OPBT demonstrates its strengths particularly well, because fast operation and high current densities are needed. With this thesis a series of milestones on the path to commercial viability of the OPBT have been reached, making the device fit for large-scale production and integration into flexible electronic circuits, allowing it to drive the bendable organic displays of the future.:1 Introduction
2 Fundamentals
3 Experimental
4 Results – Flexible Devices
5 Results – Anodization of the Base Layer
6 Results – TEM Investigations
7 Results – Electrical Stress Measurements
8 Conclusion and Outlook / Durch die Aussicht auf mechanische Flexibilität und kostengünstige Herstellung haben Organische Transistoren in den vergangenen Jahren erhebliches Forschungsinteresse geweckt. Innovative Anwendungsideen umfassen tragbare elektronische Sensorsysteme und massenproduzierte, preiswerte Ortungsetiketten für die Logistik.
Leider führen die geringe Ladungsträgermobilität in organischen Halbleitermaterialien, Kontaktwiderstände am Organik-Metall-Übergang und vergleichsweise große Kanallängen der Transistoren dazu, dass organische Transistoren langsamer sind und geringere Stromdichten aufweisen als anorganische Transistoren. Der Organic Permeable Base Transistor (Organischer Transistor mit durchlässiger Basis, OPBT) stellt eine bahnbrechende Transistorarchitektur dar, die mithilfe eines vertikalen Transistorkanals einige der vorgenannten Nachteile überwindet. Dadurch ist die Kanallänge deutlich kleiner, als das bei lateralen organischen Transistorbauteilen der Fall ist. Infolgedessen kann er sich als der bisher schnellste organische Transistor mit einer Transitfrequenz von 40 MHz behaupten und Stromdichten bis in den kA/cm^2 Bereich treiben. Nichtsdestotrotz hat der OPBT bislang keine Anwendungsreife erreicht und wird derzeit nur im Labormaßstab auf starren Glassubstraten hergestellt. Hindernisse sind die geringe Produktionsausbeute, große Leckströme und die unklare Zuverlässigkeit der Bauteile.
Diese Arbeit nimmt die eben genannten Herausforderungen in Angriff. Es werden OPBTs auf flexible Polymersubstrate übertragen, sowie eine kontrollierte und einfach reproduzierbare Herstellungsmethode für das wichtige Basisoxid durch elektrochemische Anodisierung eingeführt. Die Anodisierungsmethode lässt definierte Isolationsschichten entstehen, was zu stark reduzierten Leckströmen und folglich zu sehr großen Transmissionsfaktoren von 99,9996% führt. Die Untersuchung der elektrischen Stabilität von OPBTs zeigt, dass die Bauteile als Schalttransistoren in organischen Aktiv-Matrix-Displays geeignet sind. Für diese Anwendung sind die Stärken von OPBTs besonders relevant, weil kurze Schaltzeiten und hohe Stromdichten benötigt werden. Mit der vorliegenden Arbeit wird eine Reihe von Meilensteinen auf dem Weg zur kommerziellen Anwendbarkeit von OPBTs erreicht. Damit ist das Bauteil reif für die großtechnische Produktion und die Integration in flexible elektronische Schaltkreise, die die biegsamen organischen Displays der Zukunft ansteuern werden.:1 Introduction
2 Fundamentals
3 Experimental
4 Results – Flexible Devices
5 Results – Anodization of the Base Layer
6 Results – TEM Investigations
7 Results – Electrical Stress Measurements
8 Conclusion and Outlook
|
4 |
Anodisierungseigenschaften von gesputterten Aluminiumdünnschichten zur optimierten Herstellung von plasmonischen NanorodarraysPatrovsky, Fabian 12 October 2017 (has links)
Im Bereich opto-elektronischer Sensortechnik ist ein eindeutiger Trend hin zu immer kleineren Bauelementen und immer spezifischeren Messanwendungen zu erkennen. Plasmonische Materialien auf der Basis von Nanostrukturen bieten sich hierbei hervorragend für dieses Aufgabenfeld an. Deren optische Absorbanzpeaks lassen sich über die geometrischen Parameter der Nanostrukturen einfach und präzise steuern und reagieren äußerst empfindlich auf Brechungsindexänderungen im Umgebungsmedium. Die Herstellung von aufrecht stehenden, teppichartig angeordneten Nanorods auf Basis von anodisierten Aluminiumoxidmatrizen bietet als skalierbares Bottom-up-Verfahren eine einzigartige Kombination aus Prozessgeschwindigkeit, Steuerbarkeit und Kosteneffizienz.
In der vorliegenden Dissertation wurde untersucht, wie sich verschiedene Sputterparameter während der Herstellung von Aluminiumdünnschichten auf deren Anodisierungseigenschaften, sowie die anschließende Porenbefüllung und die plasmonischen Eigenschaften des so erzeugten Materials auswirken. Hierzu wurde reines Aluminium bei verschiedenen Sputterleistungen und -raten abgeschieden und hinsichtlich seiner Oberflächenkonfiguration und Prozessierbarkeit im bereits etablierten Nanorodproduktionsverfahren untersucht. Gleichwohl fanden Versuche statt, Aluminiumschichten mit einer schwachen Siliziumlegierung sowie durch reaktives Sputtern mit Sauerstoff voroxidiertes Aluminium zu anodisieren und für die Nanorodherstellung zu nutzen. Als typisches Ergebnis dieser Versuche zeigt sich eine deutliche Verbesserung des Anodisierungs- und Abscheideverhaltens, wenn die Sputterparameter so gewählt werden, dass eine möglichst feinkristalline Schicht abgeschieden wird.
Während die Variation der Sputterleistung nur in einer mäßigen Verbesserung und die Siliziumlegierung sogar in einer Verschlechterung der optischen Eigenschaften resultieren, zeigt sich die Sauerstoffzugabe als äußerst vorteilhaft für den Herstellungsprozess sowie die plasmonischen Eigenschaften der fertigen Strukturen. Hierbei weisen Aluminiumschichten mit einem Sauerstoffanteil von 10 22 at.% die gleichmäßigste Anodisierung sowie die schmalsten Plasmonenresonanzpeaks auf, bei gleichzeitig hoher Reproduzierbarkeit. Für derartige Proben konnte eine annähernd vollständige Porenbefüllung erreicht werden. Weiterhin ist die Breite der Plasmonenresonanz hier vergleichbar mit der eines simulierten, defektfreien Nanorodarrays mit perfekt hexagonaler Nanorodanordnung, sodass von einer deutlichen Optimierung gesprochen werden kann, welche nun weitere Untersuchungen an diesem System oder sogar eine großtechnische Produktion ermöglicht
Letztendlich offenbart eine quantitative Analyse der Strom-Zeit-Kurve der Anodisierung, dass diese in Form und Ausprägung mit der Güte der plasmonischen Eigenschaften der so produzierten Strukturen korreliert. Somit bietet sich diese als schnelles und günstiges Verfahren zur Qualitätskontrolle in einem sehr frühen Prozessstadium an. / Optical sensing witnesses an increasing trend towards smaller components and more specific applications. Nanostructure-based materials excellently fulfil these kinds of task. Their optical absorbance peaks are easily and precisely controllable by changing the structures‘ geometrical parameters, and have shown to be highly sensitive to refractive index changes of the surrounding medium. The fabrication of free-standing arrays of metallic nanorods based on anodised aluminium oxide matrices as a scalable bottom-up process offers a unique combination of throughput in production, process control and cost efficiency.
The scope of the present dissertation thesis is the exploration of different sputtering parameters and techniques for the fabrication of aluminium thin-films, their influence on the anodisation properties as well as subsequent pore filling, and of course the optical properties of the final plasmonic structure. For this, pure aluminium was deposited at different sputtering powers and rates, and was investigated regarding its surface configuration as well as its usability within the well-established nanorod fabrication process. Similarly, attempts were made to anodise aluminium alloyed with small quantities of silicon as well as substoichiometric aluminium oxide, which was prepared by reactive sputtering under partial oxygen pressure. As a typical result of these studies, it was found that a considerable improvement of anodisation and electroplating behaviour could be achieved, provided the sputtering conditions were chosen such that the deposited films\' crystal size becomes as small as possible.
While the variation of the sputtering power lead only to a marginal improvement and the silicon admixture even deteriorated the sample quality, the use of partially oxidised aluminium layers proved to be highly advantageous for the fabrication process as well as the plasmonic properties of the final structures. The optimal oxygen content was found to be 10 22 at.%, with these samples showing the most regular anodisation behaviour, the smallest absorbance peak width, and at the same time a high reproducibility. Furthermore, the peak width of these samples is comparable to that of simulated, defect-free nanorod arrays in a perfect hexagonal arrangement. These fabrication parameters can therefore be viewed as highly optimised and well-suited for further investigations of this material or even a large-scale production process.
Finally, a quantitative analysis of the current-time-curve of an anodisation process reveals a correlation between its characteristics and the samples’ plasmonic qualities. Hence, the analysis of this curve may be used as a fast and cheap method of quality control at the early stages of the fabrication process.
|
Page generated in 0.0516 seconds