Spelling suggestions: "subject:"anomaler all desseffekt"" "subject:"anomaler fall desseffekt""
1 |
Elektrischer Transport und allgemeine Charakterisierung der halbleitenden Silicide Beta-FeSi2 und MnSi1,73Teichert, Steffen 26 November 1996 (has links)
Die elektrische Leitfähigkeit und der Hall-Effekt der halbleitenden Silicide
Beta-FeSi2 und MnSi1,73 werden im Temperaturbereich zwischen 4,2 und 300 K
untersucht. In ergänzenden Untersuchungen werden strukturelle und optische
Eigenschaften dieser Materialien bestimmt.
Die Ergebnisse der Messungen an MnSi1,73 - Schichten werden im Rahmen der
Boltzmann-Gleichung in Relaxationszeitnäherung interpretiert. Die Temperatur-
abhängigkeit der elektrischen Leitfähigkeit und der Hall-Beweglichkeit der
Mangansilicid-Schichten kann unter Einbeziehung der Ladungsträgerstreuung an
Korngrenzen und akustischen Phononen erklärt werden. In einer kritischen
Diskussion werden die Grenzen des verwendeten Transportmodells aufgezeigt.
Den Schwerpunkt der Untersuchungen an Beta-FeSi2 bildet die Analyse des
Hall-Koeffizienten in Abhängigkeit von der Temperatur und dem Magnetfeld.
Mit einem neuen dynamischen Meßverfahren werden umfassende Ergebnisse für den
Hall-Koeffizienten in dünnen Schichten und Einkristallen erhalten, die eine
herkömmliche Interpretation des Hall-Effekts in Beta-FeSi2 in Frage stellen.
Unter Einbeziehung eines wesentlichen Einflusses des anomalen Hall-Effekts in
die Interpretation, können die Eigenschaften des Hall-Effekts in Beta-FeSi2
verstanden werden.
|
2 |
Magneto-thermoelectric effects in magnetic metallic thin-filmsPark, Gyuhyeon 30 August 2021 (has links)
It was the purpose of this thesis to evaluate two-dimensional (2D) magneto-thermoelectric (MTE) phenomena in thinner regime. Mostly this work was motivated by the recent discovery of MTE properties in transition metal dichalcogenides (TMD). In general, TMD thin films have attracted much attention due to their very good electrical, optical, and electrochemical properties. However the total amount of studies of the MTE in TMD is rather small compared to the other properties, such as electric, opto-electric, and catalyst. Hence, in this thesis, we aimed to evaluate the MTE properties in TMD materials. Before we started to measure TMDs, we established a measurement platform and studied MTE properties in ferromagnetic CoFeB, and Weyl semimetal Co2MnGa.:1. Introduction
a. Physical background
i. Seebeck Effect
ii. Anomalous Hall Effect and Anomalous Nernst Effect
iii. Mott relation
2. Sample Preparation and evaluation
a. Physical vapor deposition
b. Mechanical Exfoliation
c. Patterning Process
3. Data Evaluation
4. State of the art in Transition Metal Dichalcogenids
a. Introduction
b. TMD in use
c. Magneto-thermoelectric properties in TMD
5. Magneto-thermoelectrical properties in CoFeB thin film
a. Introduction
b. Results and Discussion
c. Conclusion
6. Anomalous Nernst and Anomalous Hall effect in Co2MnGa thin film
a. Introduction
b. Results and Discussion
c. Summary
7. Anomalous Hall effect in exfoliated VS2 flake
a. Introduction
b. Experiment
c. Results and Discussion
d. Summary
8. Summary
Acknowledgement and References
|
3 |
Elektrischer Transport und allgemeine Charakterisierung der halbleitenden Silicide Beta-FeSi2 und MnSi1,73Teichert, Steffen 01 April 1996 (has links)
Die elektrische Leitfähigkeit und der Hall-Effekt der halbleitenden Silicide
Beta-FeSi2 und MnSi1,73 werden im Temperaturbereich zwischen 4,2 und 300 K
untersucht. In ergänzenden Untersuchungen werden strukturelle und optische
Eigenschaften dieser Materialien bestimmt.
Die Ergebnisse der Messungen an MnSi1,73 - Schichten werden im Rahmen der
Boltzmann-Gleichung in Relaxationszeitnäherung interpretiert. Die Temperatur-
abhängigkeit der elektrischen Leitfähigkeit und der Hall-Beweglichkeit der
Mangansilicid-Schichten kann unter Einbeziehung der Ladungsträgerstreuung an
Korngrenzen und akustischen Phononen erklärt werden. In einer kritischen
Diskussion werden die Grenzen des verwendeten Transportmodells aufgezeigt.
Den Schwerpunkt der Untersuchungen an Beta-FeSi2 bildet die Analyse des
Hall-Koeffizienten in Abhängigkeit von der Temperatur und dem Magnetfeld.
Mit einem neuen dynamischen Meßverfahren werden umfassende Ergebnisse für den
Hall-Koeffizienten in dünnen Schichten und Einkristallen erhalten, die eine
herkömmliche Interpretation des Hall-Effekts in Beta-FeSi2 in Frage stellen.
Unter Einbeziehung eines wesentlichen Einflusses des anomalen Hall-Effekts in
die Interpretation, können die Eigenschaften des Hall-Effekts in Beta-FeSi2
verstanden werden.
|
4 |
Magnetic Properties and Domains in the Uniaxial Ferromagnet Mn1.4PtSn and the Non-collinear Antiferromagnet Mn3Pt under StrainZuniga Cespedes, Belen Elizabeth 01 April 2022 (has links)
Magnetic materials are of great research interest because of their potential applications. Most Mn-based compounds exhibit magnetic ordering, being antiferromagnetic or ferromagnetic depending on their crystal structure. Many of these compounds have complex non-collinear magnetic structures that can give rise to exotic and robust phenomena. The scope of this thesis encompasses two independent projects on exploring single-crystalline Mn-based compounds with magnetic properties: (i) the study of the thickness-dependent magnetic textures in ferromagnetic Mn1.4PtSn by means of Focused Ion Beam (FIB) for sample shaping and Magnetic Force Microscopy (MFM) for imaging, and (ii) the experimental demonstration of an anomalous Hall effect in non-collinear antiferromagnetic Mn3Pt, revealed with the aid of uniaxial pressure tuned in-situ. The first chapter motivates the study of magnetic materials and introduces the theoretical framework on which they are understood. In particular, refers to the energy contributions of magnetic origin and gives an overview of the Hall effect and how it is used to probe magnetic properties, from ferromagnetism to non-collinear antiferromagnetism and non-coplanar spin textures (such as the so-called skyrmions).
The second chapter is dedicated to the ferromagnetic compound Mn1.4PtSn. It starts by introducing concepts important in the context of magnetic domains. A variety of magnetic textures are discussed, in particular antiskyrmions which differ from regular skyrmions by their internal structure. A material-specific introduction is given, starting by its discovery as the first antiskyrmion-hosting compound (when in thin-plate shape) and including recent literature showing by means of neutron scattering how magnetic domains in bulk single crystals are best described as anisotropic fractals. This study complements our first observations in real-space MFM images of the magnetic texture in this material. The detailed study of the dependence of the magnetic domains as a function of sample thickness is presented and analyzed.
The third and final chapter focuses on antiferromagnetic Mn3Pt. To motivate the experiment, the theoretical study that predicts the presence of an intrinsic zero-field anomalous contribution to the Hall effect for this material is introduced. Next, the experimental investigation of single crystals of Mn3Pt is presented, where a Hall effect dominated by the ordinary contribution in the temperature range from 10 to 300 K is found. Thereafter, the response of the Hall effect to uniaxial pressure tuned in-situ is explored. When the sample is compressed, a hysteresis is observed to open up. The magnitude of this anomalous Hall conductivity (when compressing the sample by ∼0.2 GPa) is estimated to be at least ∼ 10 Ω-1cm-1 at room temperature and ∼ 40 Ω-1cm-1 at 100 K, and it is demonstrated that the measured value originates in the antiferromagnetic structure, rather than in a stress-induced ferromagnetism.:1 Introduction 1
1.1 Overview of elemental properties . . . . . . . . . . . . . . . . 1
1.1.1 Notes on Mn . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Notes on Pt . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Notes on Sn . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Magnetic Interactions . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Zeeman interaction . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Magnetostatic energy . . . . . . . . . . . . . . . . . . . 5
1.2.3 Magnetic anisotropy . . . . . . . . . . . . . . . . . . . 6
1.2.4 Magnetoelastic coupling . . . . . . . . . . . . . . . . . 7
1.2.5 Exchange interaction . . . . . . . . . . . . . . . . . . . 8
1.2.6 Antisymmetric exchange . . . . . . . . . . . . . . . . . 10
1.3 Antiferro-, ferri- and helimagnets . . . . . . . . . . . . . . . . 11
1.4 Hall effect in magnetism . . . . . . . . . . . . . . . . . . . . . 14
1.4.1 Geometrical phase in quantum mechanics . . . . . . . 14
In the context of the anomalous Hall effect . . . . . . 16
1.4.2 Complementary anomalous Hall theories . . . . . . . . 18
Skew scattering . . . . . . . . . . . . . . . . . . . . . . 18
Inelastic scattering . . . . . . . . . . . . . . . . . . . . 18
Side jump . . . . . . . . . . . . . . . . . . . . . . . . . 18
Spin chirality mechanism . . . . . . . . . . . . . . . . 19
I The uniaxial ferromagnet Mn1.4PtSn 21
2 Mn1.4PtSn 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Topology in magnetism . . . . . . . . . . . . . . . . . 27
2.2.2 Domain theory . . . . . . . . . . . . . . . . . . . . . . 29
Domain refinement . . . . . . . . . . . . . . . . . . . . 31
2.2.3 Literature overview . . . . . . . . . . . . . . . . . . . . 32
SANS studies on bulk Mn1.4PtSn . . . . . . . . . . . . 34
2.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Sample preparation . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Lamellae fabrication . . . . . . . . . . . . . . . . . . . 37
2.3.3 Magnetic Force Microscopy . . . . . . . . . . . . . . . 38
History . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Operating principle . . . . . . . . . . . . . . . . . . . . 39
Specifications for our experiments . . . . . . . . . . . . 40
2.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 Bulk samples characterization . . . . . . . . . . . . . . 40
Mn1.4Pt0.9Pd0.1Sn polycrystal . . . . . . . . . . . . . . 40
Mn1.4PtSn single crystal . . . . . . . . . . . . . . . . . 43
Mn1.4PtSn single crystal in applied field . . . . . . . . 45
Mn1.4PtSn single crystal below TSR . . . . . . . . . . . 46
2.4.2 Lamellae characterization . . . . . . . . . . . . . . . . 48
Thickness dependence . . . . . . . . . . . . . . . . . . 48
Temperature dependence . . . . . . . . . . . . . . . . 54
Magnetic field dependence . . . . . . . . . . . . . . . . 56
2.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . 63
II The non-collinear antiferromagnet Mn3Pt under strain 65
3 Mn3Pt 67
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.2 Background physics . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.1 Thin film study of Mn3Pt . . . . . . . . . . . . . . . . 71
3.2.2 Our contribution . . . . . . . . . . . . . . . . . . . . . 73
3.3 Experimental methods . . . . . . . . . . . . . . . . . . . . . . 74
3.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1 Characterization of unstrained crystals . . . . . . . . . 75
3.4.2 Elastic response of Mn3Pt single crystals . . . . . . . . 79
Electrical transport response to strain . . . . . . . . . 81
3.4.3 Onset of AHE in single crystals under uniaxial pressure 84
Sample III4 . . . . . . . . . . . . . . . . . . . . . . . . 84
Sample IV1 . . . . . . . . . . . . . . . . . . . . . . . . 89
Sample IV2 . . . . . . . . . . . . . . . . . . . . . . . . 91
3.4.4 Temperature dependence of the AHE . . . . . . . . . . 94
3.4.5 Elastic limit of Mn3Pt . . . . . . . . . . . . . . . . . . 98
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A On Mn3Pt resistivity 101
B On Mn3Pt sample mounting 103
|
5 |
Anomalous electric, thermal, and thermoelectric transport in magnetic topological metals and semimetalsNoky, Jonathan 11 August 2021 (has links)
In den letzten Jahren führte die Verbindung zwischen Topologie und kondensierter Materie zur Entdeckung vieler interessanter und exotischer elektronischer Effekte. Während sich die Forschung anfangs auf elektronische Systeme mit einer Bandlücke wie den topologischen Isolator konzentrierte, erhalten in letzter Zeit topologische Halbmetalle viel Aufmerksamkeit. Das bekannteste Beispiel sind Weyl-Halbmetalle, die an beliebigen Punkten in der Brillouin-Zone lineare Kreuzungen von nicht entarteten Bändern aufweist. An diese Punkte ist eine spezielle Quantenzahl namens Chiralität gebunden, die die Existenz von Weyl-Punktpaaren erzwingt. Diese Paare sind topologisch geschützt und wirken als Quellen und Senken der Berry-Krümmung, einem topologischen Feld im reziproken Raum.
Diese Berry-Krümmung steht in direktem Zusammenhang mit dem anomalen Hall-Effekt, der die Entstehung einer Querspannung aus einem Längsstrom in einem magnetischen Material beschreibt. Analog existiert auch der anomale Nernst-Effekt, bei dem der longitudinale Strom durch einen thermischen Gradienten ersetzt wird. Dieser Effekt ermöglicht die Umwandlung von Wärme in elektrische Energie und ist zudem stark an die Berry-Krümmung gebunden.
In dieser Arbeit werden die anomalen Transporteffekte zunächst in fundamentalen Modellsystemen untersucht. Hier wird eine Kombination aus analytischen und numerischen Methoden verwendet, um Quantisierungen sowohl des Hall- und Nernst- als auch des thermischen Hall-Effekts in zweidimensionalen Systemen mit und ohne externen Magnetfeldern zu zeigen. Eine Erweiterung in drei Dimensionen zeigt eine Quasi-Quantisierung, bei der die Leitfähigkeiten Werte der jeweiligen zweidimensionalen Quanten skaliert durch charakteristische Wellenvektoren annehmen.
Im nächsten Schritt werden verschiedene Mechanismen zur Erzeugung starker Berry-Krümmung und damit großer anomaler Hall- und Nernst-Effekte sowohl in Modellsystemen als auch in realen Materialien untersucht. Dies ermöglicht die Identifizierung und Isolierung vielversprechender Effekte in den einfachen Modellen, in denen wichtige Merkmale untersucht werden können. Die Ergebnisse können dann auf die realen Materialien übertragen werden, wo die jeweiligen Effekte erkennbar sind. Hier werden sowohl Weyl-Punkte als auch Knotenlinien in Kombination mit Magnetismus als vielversprechende Eigenschaften identifiziert und Materialrealisierungen in der Klasse der Heusler-Verbindungen vorgeschlagen.
Diese Verbindungen sind eine sehr vielseitige Materialklasse, in der unter anderem auch magnetische topologische Metalle zu finden sind. Um ein tieferes Verständnis der anomalen Transporteffekte zu erhalten sowie Faustregeln für Hochleistungsverbindungen abzuleiten, wurde eine High-Throughput-Rechnung von magnetisch-kubischen Voll-Heusler-Verbindungen durchgeführt. Diese Berechnung zeigt die Bedeutung von Spiegelebenen in magnetischen Materialien für große anomale Hall- und Nernst-Effekte und zeigt, dass einige der Heusler-Verbindungen die höchsten bisher berichteten Literaturwerte bei diesen Effekten übertreffen.
Auch andere interessante Effekte im Zusammenhang mit Weyl-Punkten werden untersucht. Beim bekannten Weyl-Halbmetall NbP weisen die Weyl-Punkte aufgrund der hohen Symmetrie des Kristalls eine hohe Entartung auf. Die Anwendung von einachsigem Zug reduziert jedoch die Symmetrien und hebt damit die Entartungen auf. Eine theoretische Untersuchung zeigt, dass die Weyl-Punkte bei einachsigem Zug energetisch verschoben werden und, was noch wichtiger ist, dass sie bei realistischen Werten das Fermi-Niveau durchschreiten. Dies macht NbP zu einer vielversprechenden Plattform, um die Weyl-Physik weiter zu untersuchen. Die theoretischen Ergebnisse werden mit experimentellen Messungen von Shubnikov-de-Haas-Oszillationen unter einachsigem Zug kombiniert und es wird eine gute Übereinstimmung mit den theoretischen Ergebnissen gefunden.
Als erster Schritt in Richtung neuer Berechnungsmethoden wird die Idee eines Weyl-Halbmetall-basierten Chiralitätsfilters für Elektronen untersucht. An der Grenzfläche zweier Weyl-Halbmetalle kann in Abhängigkeit von den genauen Weyl-Punktparametern nur eine Chiralität übertragen werden. Hier wird ein effektives geometrisches Modell erstellt und zur Untersuchung realer Materialgrenzflächen eingesetzt. Während im Allgemeinen eine Filterwirkung möglich erscheint, zeigten die untersuchten Materialien keine geeignete Kombination. Hier können weitere Studien mit Fokus auf magnetische Weyl-Halbmetalle oder Multifold-Fermion-Materialien durchgeführt werden.:List of publications
Preface
1. Theoretical background
1.1. Berry curvature and Weyl semimetals
1.1.1. From the adiabatic evolution to the Berry phase
1.1.2. From the Berry phase to the Berry curvature
1.1.3. Topological phases of condensed matter
1.1.4. Weyl semimetals
1.1.5. Dirac semimetals
1.1.6. Nodal line semimetals
1.2. Density-functional theory
1.2.1. Born-Oppenheimer approximation
1.2.2. Hohenberg-Kohn theorems
1.2.3. Kohn-Sham formalism
1.2.4. Exchange-correlation functional
1.2.5. Pseudopotentials
1.2.6. Basis functions
1.2.7. VASP
1.3. Tight-binding Hamiltonian from Wannier functions
1.3.1. Wannier functions
1.3.2. Constructing Wannier functions from DFT
1.3.3. Generating a Wannier tight-binding Hamiltonian
1.3.4. Necessity of the tight-binding Hamiltonian
1.4. Linear response theory
1.4.1. General introduction to linear response
1.4.2. Anomalous Hall effect
1.4.3. Anomalous Nernst effect
1.4.4. Anomalous thermal Hall effect
1.4.5. Common features of anomalous transport effects
1.4.6. Symmetry considerations for Berry curvature related transport
effects
1.4.7. Magneto-optic Kerr effect
1.4.8. About the efficiency of the calculations
2. (Quasi-)Quantization in the Hall, thermal Hall, and Nernst effects
2.1. Quantization with an external magnetic field
2.1.1. Two-dimensional case
2.1.2. Three-dimensional case
2.2. Quantization without an external field
2.2.1. Two-dimensional case
2.2.2. Three-dimensional case .
2.3. A remark on the spin Hall effect
2.4. A remark on the quasi-quantization of the three-dimensional conductivities
2.5. Conclusions
3. Understanding anomalous transport
3.1. Anomalous transport without a net magnetic moment
3.1.1. Toy model
3.1.2. Ti2MnAl and related compounds
3.2. Large Berry curvature enhancement from nodal line gapping
3.2.1. Toy model
3.2.2. Fe2MnP and related compounds
3.2.3. Co2MnGa
3.3. Topological features away from the Fermi level and the anomalous Nernst
effect
3.3.1. Toy model .
3.3.2. Co2FeGe and Co2FeSn
3.4. Conclusions
4. Heusler database calculation
4.1. Workflow
4.2. Importance of mirror planes
4.3. The right valence electron count
4.4. Correlation between anomalous Hall and Nernst effects
4.5. Selected special compounds
4.6. Conclusions
5. NbP under uniaxial strain
5.1. NbP and its symmetries
5.2. The influence of strain on the electronic structure
5.2.1. Shifting of the Weyl points
5.2.2. Splitting of the Fermi surfaces
5.3. Comparison with experimental results
5.4. Conclusions
6. A tunable chirality filter
6.1. Concept
6.2. Geometrical simplification and expansion for more Weyl points
6.3. Material selection
6.3.1. Workflow
6.3.2. Results for NbP and TaAs
6.3.3. Results for Ag2Se and Ag2S
6.4. Conclusions and perspective .
Summary and outlook
A. Numerical tricks
A.1. Hamiltonian setup at several k points at once
A.2. Precalculating prefactors
B. Derivation of the conductivity (quasi-)quanta
B.1. Two dimensions
B.1.1. General formula and necessary approximations
B.1.2. Useful integrals
B.1.4. Quantized thermal Hall effect
B.1.5. Quantized Nernst effect
B.1.6. Flat bands and the Nernst effect
B.2. Three dimensions
B.2.1. General formula
B.2.2. Three-dimensional electron gas
B.2.3. Three-dimensional Weyl semimetal
C. Heusler database tables
D. Details on the NbP strain calculations
E. Details on the geometrical matching procedure
References
List of abbreviations
List of Figures
List of Tables
Acknowledgements
Eigenständigkeitserklärung / In recent years, the connection between topology and condensed matter resulted in the discovery of many interesting and exotic electronic effects. While in the beginning, the research was focused on gapped electronic systems like the topological insulator, more recently, topological semimetals are getting a lot of attention. The most well-known example is the Weyl semimetal, which hosts linear crossings of non-degenerate bands at arbitrary points in the Brillouin zone. Tied to these points there is a special quantum number called chirality, which enforces the existence of Weyl point pairs. These pairs are topologically protected and act as sources and sinks of the Berry curvature, a topological field in reciprocal space.
This Berry curvature is directly connected to the anomalous Hall effect, which describes the emergence of a transverse voltage from a longitudinal current in a magnetic material. Analogously, there also exists the anomalous Nernst effect, where the longitudinal current is replaced by a thermal gradient. This effect allows for the conversion of heat into electrical energy and is also strongly tied to the Berry curvature.
In this work, the anomalous transport effects are at first studied in fundamental model systems. Here, a combination of analytical and numerical methods is used to reveal quantizations in both the Hall, the Nernst, and the thermal Hall effects in two-dimensional systems with and without external magnetic fields. An expansion into three dimensions shows a quasi-quantization, where the conductivities take values of the respective two-dimensional quanta scaled by characteristic wavevectors.
In the next step, several mechanisms for the generation of strong Berry curvature and thus large anomalous Hall and Nernst effects are studied in both model systems and real materials. This allows for the identification and isolation of promising effects in the simple models, where important features can be studied. The results can then be applied to the real materials, where the respective effects can be recognized. Here, both Weyl points and nodal lines in combination with magnetism are identified as promising features and material realizations are proposed in the class of Heusler compounds.
These compounds are a very versatile class of materials, where among others also magnetic topological metals can be found. To get a deeper understanding of the anomalous transport effects as well as to derive guidelines for high-performance compounds, a high-throughput calculation of magnetic cubic full Heusler compounds was carried out. This calculation reveals the importance of mirror planes in magnetic materials for large anomalous Hall and Nernst effects and shows that some of the Heusler compounds outperform the highest so-far reported literature values in these effects.
Also other interesting effects related to Weyl points are investigated. In the well-known Weyl semimetal NbP, the Weyl points have a high degeneracy due to the high symmetry of the crystal. However, the application of uniaxial strain reduces the symmetries and therefore lifts the degeneracies. A theoretical investigation shows, that the Weyl points are moved in energy under uniaxial strain and, more importantly, that at reasonable strain values they cross the Fermi level. This renders NbP a promising platform to further study Weyl physics. The theoretical results are combined with experimental measurements of Shubnikov-de Haas oscillations under uniaxial strain and a good agreement with the theoretical results is found.
As a first step in the direction of new ways of computation, an idea of a Weyl semimetal based chirality filter for electrons is investigated. At the interface of two Weyl semimetals, depending on the exact Weyl point parameters, it is possible to transmit only one chirality. Here, an effective geometrical model is established and employed for the investigation of real material interfaces. While in general, a filtering effect seems possible, the investigated materials did not show any suitable combination. Here, further studies can be made with the focus on either magnetic Weyl semimetals of multifold-fermion materials.:List of publications
Preface
1. Theoretical background
1.1. Berry curvature and Weyl semimetals
1.1.1. From the adiabatic evolution to the Berry phase
1.1.2. From the Berry phase to the Berry curvature
1.1.3. Topological phases of condensed matter
1.1.4. Weyl semimetals
1.1.5. Dirac semimetals
1.1.6. Nodal line semimetals
1.2. Density-functional theory
1.2.1. Born-Oppenheimer approximation
1.2.2. Hohenberg-Kohn theorems
1.2.3. Kohn-Sham formalism
1.2.4. Exchange-correlation functional
1.2.5. Pseudopotentials
1.2.6. Basis functions
1.2.7. VASP
1.3. Tight-binding Hamiltonian from Wannier functions
1.3.1. Wannier functions
1.3.2. Constructing Wannier functions from DFT
1.3.3. Generating a Wannier tight-binding Hamiltonian
1.3.4. Necessity of the tight-binding Hamiltonian
1.4. Linear response theory
1.4.1. General introduction to linear response
1.4.2. Anomalous Hall effect
1.4.3. Anomalous Nernst effect
1.4.4. Anomalous thermal Hall effect
1.4.5. Common features of anomalous transport effects
1.4.6. Symmetry considerations for Berry curvature related transport
effects
1.4.7. Magneto-optic Kerr effect
1.4.8. About the efficiency of the calculations
2. (Quasi-)Quantization in the Hall, thermal Hall, and Nernst effects
2.1. Quantization with an external magnetic field
2.1.1. Two-dimensional case
2.1.2. Three-dimensional case
2.2. Quantization without an external field
2.2.1. Two-dimensional case
2.2.2. Three-dimensional case .
2.3. A remark on the spin Hall effect
2.4. A remark on the quasi-quantization of the three-dimensional conductivities
2.5. Conclusions
3. Understanding anomalous transport
3.1. Anomalous transport without a net magnetic moment
3.1.1. Toy model
3.1.2. Ti2MnAl and related compounds
3.2. Large Berry curvature enhancement from nodal line gapping
3.2.1. Toy model
3.2.2. Fe2MnP and related compounds
3.2.3. Co2MnGa
3.3. Topological features away from the Fermi level and the anomalous Nernst
effect
3.3.1. Toy model .
3.3.2. Co2FeGe and Co2FeSn
3.4. Conclusions
4. Heusler database calculation
4.1. Workflow
4.2. Importance of mirror planes
4.3. The right valence electron count
4.4. Correlation between anomalous Hall and Nernst effects
4.5. Selected special compounds
4.6. Conclusions
5. NbP under uniaxial strain
5.1. NbP and its symmetries
5.2. The influence of strain on the electronic structure
5.2.1. Shifting of the Weyl points
5.2.2. Splitting of the Fermi surfaces
5.3. Comparison with experimental results
5.4. Conclusions
6. A tunable chirality filter
6.1. Concept
6.2. Geometrical simplification and expansion for more Weyl points
6.3. Material selection
6.3.1. Workflow
6.3.2. Results for NbP and TaAs
6.3.3. Results for Ag2Se and Ag2S
6.4. Conclusions and perspective .
Summary and outlook
A. Numerical tricks
A.1. Hamiltonian setup at several k points at once
A.2. Precalculating prefactors
B. Derivation of the conductivity (quasi-)quanta
B.1. Two dimensions
B.1.1. General formula and necessary approximations
B.1.2. Useful integrals
B.1.4. Quantized thermal Hall effect
B.1.5. Quantized Nernst effect
B.1.6. Flat bands and the Nernst effect
B.2. Three dimensions
B.2.1. General formula
B.2.2. Three-dimensional electron gas
B.2.3. Three-dimensional Weyl semimetal
C. Heusler database tables
D. Details on the NbP strain calculations
E. Details on the geometrical matching procedure
References
List of abbreviations
List of Figures
List of Tables
Acknowledgements
Eigenständigkeitserklärung
|
6 |
Ferromagnet-Free Magnetoelectric Thin Film ElementsKosub, Tobias 12 December 2016 (has links) (PDF)
The work presented in this thesis encompasses the design, development, realization and testing of novel magnetoelectric thin film elements that do not rely on ferromagnets, but are based entirely on magnetoelectric antiferromagnets such as Cr2O3. Thin film spintronic elements, and in particular magnetoelectric transducers, are crucial building blocks of high efficiency data processing schemes that could complement conventional electronic data processing in the future. Recent developments in magnetoelectrics have revealed, that exchange biased systems are ill-suited to electric field induced switching of magnetization due to the strong coupling of their ferromagnetic layer to magnetic fields. Therefore, ferromagnet-free magnetoelectric elements are proposed here in an effort to mitigate the practical problems associated with existing exchange biased magnetoelectric elements.
This goal is achieved by establishing an all-electric read-out method for the antiferromagnetic order parameter of thin films, which allows to omit the ferromagnet from conventional exchange biased magnetoelectric elements. The resulting ferromagnet-free magnetoelectric elements show greatly reduced writing thresholds, enabled operation at room temperature and do not require a pulsed magnetic field, all of which is in contrast to state-of-the-art exchange biased magnetoelectric systems.
The novel all-electric read-out method of the magnetic field-invariant magnetization of antiferromagnets, so-called spinning-current anomalous Hall magnetometry, can be widely employed in other areas of thin film magnetism. Its high precision and its sensitivity to previously invisible phenomena make it a promising tool for various aspects of thin solid films. Based on this technique, a deep understanding could be generated as to what physical mechanisms drive the antiferromagnetic ordering in thin films of magnetoelectric antiferromagnets. As spinning-current anomalous Hall magnetometry is an integral probe of the magnetic properties in thin films, it offers no intrinsic scale sensitivity. In order to harness its great precision for scale related information, a statistical framework was developed, which links macroscopic measurements with microscopic properties such as the antiferromagnetic domain size.
|
7 |
Ferromagnet-Free Magnetoelectric Thin Film ElementsKosub, Tobias 25 November 2016 (has links)
The work presented in this thesis encompasses the design, development, realization and testing of novel magnetoelectric thin film elements that do not rely on ferromagnets, but are based entirely on magnetoelectric antiferromagnets such as Cr2O3. Thin film spintronic elements, and in particular magnetoelectric transducers, are crucial building blocks of high efficiency data processing schemes that could complement conventional electronic data processing in the future. Recent developments in magnetoelectrics have revealed, that exchange biased systems are ill-suited to electric field induced switching of magnetization due to the strong coupling of their ferromagnetic layer to magnetic fields. Therefore, ferromagnet-free magnetoelectric elements are proposed here in an effort to mitigate the practical problems associated with existing exchange biased magnetoelectric elements.
This goal is achieved by establishing an all-electric read-out method for the antiferromagnetic order parameter of thin films, which allows to omit the ferromagnet from conventional exchange biased magnetoelectric elements. The resulting ferromagnet-free magnetoelectric elements show greatly reduced writing thresholds, enabled operation at room temperature and do not require a pulsed magnetic field, all of which is in contrast to state-of-the-art exchange biased magnetoelectric systems.
The novel all-electric read-out method of the magnetic field-invariant magnetization of antiferromagnets, so-called spinning-current anomalous Hall magnetometry, can be widely employed in other areas of thin film magnetism. Its high precision and its sensitivity to previously invisible phenomena make it a promising tool for various aspects of thin solid films. Based on this technique, a deep understanding could be generated as to what physical mechanisms drive the antiferromagnetic ordering in thin films of magnetoelectric antiferromagnets. As spinning-current anomalous Hall magnetometry is an integral probe of the magnetic properties in thin films, it offers no intrinsic scale sensitivity. In order to harness its great precision for scale related information, a statistical framework was developed, which links macroscopic measurements with microscopic properties such as the antiferromagnetic domain size.:TABLE OF CONTENTS
Abbreviations 9
1 Introduction 11
1.1 Motivation 11
1.2 Objectives 12
1.3 Organization of the thesis 13
2 Background 15
2.1 History of magnetoelectric coupling 15
2.2 Long range magnetic ordering 16
2.2.1 Magnetic order parameter and field susceptibility 17
2.2.2 Magnetic proximity effect 19
2.2.3 Exchange bias 20
2.3 Phenomenology of magnetoelectric coupling 21
2.3.1 The linear magnetoelectric effect 21
2.3.2 Magnetoelectric pressure on the antiferromagnetic order parameter 22
2.3.3 Switching the antiferromagnetic order parameter 23
2.4 Realized magnetoelectric thin film elements 24
2.4.1 BiFeO3/CoFe system 24
2.4.2 Cr2O3/Co/Pt system 25
3 Experimental methods 27
3.1 Development of ferromagnet free magnetoelectric elements 28
3.1.1 The substrate 29
3.1.2 The Cr2O3 bulk and top surface 31
3.1.3 The V2O3 or Pt bottom electrodes 33
3.1.4 Epitaxial relationships 34
3.1.5 The Cr2O3 bottom interface 39
3.1.6 Twinning of Cr2O3 39
3.1.7 Hall crosses and patterning processes 43
3.2 Magnetotransport measurements 44
3.2.1 Hall effects 45
3.2.2 Anomalous Hall effect 46
3.2.3 Magnetoelectric writing 47
3.2.4 All electric read out 49
3.3 The experimental setup 50
3.3.1 Temperature control 50
3.3.2 Magnetic field control 51
4 Spinning-current anomalous Hall magnetometry 53
4.1 Characteristics of the technique 53
4.1.1 Operational principle 53
4.1.2 Advantages 55
4.1.3 Magnetic hysteresis loops and field-invariant magnetization 55
4.1.4 Measurement of field-invariant magnetization 56
4.1.5 Limitations 58
4.2 Application of SCAHM to Cr2O3(0001) thin films 59
4.2.1 Criticality and distribution of the antiferromagnetic phase transition 61
4.2.2 Evaluation of the magnetic proximity effect 64
4.3 SCAHM with thin metallic antiferromagnetic IrMn films 65
4.3.1 [Pt/Co]4/IrMn exchange bias system 65
4.3.2 Isolated antiferromagnetic IrMn thin films 67
5 Magnetoelectric performance 69
5.1 Magnetoelectric field cooling 69
5.2 The gate bias voltage 71
5.3 Isothermal binary magnetoelectric writing in Cr2O3 72
6 Order parameter selection in magnetoelectric antiferromagnets 77
6.1 Uncompensated magnetic moment 77
6.2 Extrinsic causes for broken sublattice equivalence 81
6.3 The V2O3 gate electrode 83
7 Measurement of microscopic properties with an integral probe 87
7.1 Interentity magnetic exchange coupling 87
7.2 Ensemble formalism for the entity size determination 90
7.3 Estimation of the entity sizes 94
7.4 Microscopic confirmation of the ensemble model 97
8 Summary and Outlook 101
8.1 Goal-related achievements 101
8.1.1 All-electric read-out of the AF order parameter 101
8.1.2 Electric field induced writing of the AF order parameter 102
8.2 Further achievements 103
8.2.1 Foreseen impact of SCAHM on thin film magnetism 103
8.2.2 Practical optimization routes of magnetoelectric Cr2O3 systems 104
8.2.3 Theoretical work 105
8.3 Future directions 105
8.3.1 Development of Cr2O3-based magnetoelectric systems 105
8.3.2 Applications of SCAHM 106
References 107
Erklärung 113
Acknowledgements 115
Curriculum Vitae 117
Scientific publications, contributions, patents 119
|
Page generated in 0.0712 seconds