• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 12
  • 8
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 114
  • 22
  • 15
  • 14
  • 13
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Design and Application of Triplet-Triplet Annihilation Upconversion Materials

Churchill, Emily Marie January 2022 (has links)
Triplet-triplet annihilation upconversion (TTA-UC) is a process which converts two low energy photons into one higher-energy excited state. TTA-UC has recently received attention for its potential application to many light driven processes, such as improving efficiency in photovoltaic devices and allowing use of low-energy light sources for in vivo applications, including bioimaging, optogenetics, and photochemotherapy. Each of these applications has a different set of energetic requirements, which has created a need for a diverse library of upconverting materials. Additionally, these applications benefit from improved upconversion efficiency in solid-state, a task that has proven challenging for the traditionally solution-phase process. Macromolecular scaffolds are a promising avenue to tune the electronic communication between chromophores and control intermolecular packing in solid-state. Herein, we report the investigation of dendrimers with annihilator-functionalized termini and linear annihilator polymers as frameworks to control local annihilator concentration and communication. We find that multi-annihilator dendrimers exhibit higher upconversion yields at low concentrations compared to similar concentrations of monomer; however, higher generation dendrimers allow strong interchromophore coupling, which promotes parasitic excimer formation, decreasing relative upconversion yields. Linear annihilator copolymers with alternating anthracene and phenyl or naphthyl bridges had ground state optical properties predictive of interchromophore communication based on bridge connectivity, interchromophore length, and polymer planarity. Non-conjugated, naphthyl polymers were observed to be the most efficient at intramolecular TTA-UC in dilute solutions. In this dissertation, we will discuss current efforts in the field towards control and analysis of intramolecular TTA-UC through design of multi-annihilator macromolecules and novel annihilator scaffolds targeting underutilized regions of the electromagnetic spectrum. In Chapter 1, we list important factors to consider about improving TTA-UC and follow with discussion of reported macromolecular systems and their efforts towards intramolecular TTA-UC. Chapter 2 introduces a series of non-conjugated dendrimers functionalized with anthracene annihilators on the periphery and analyzes their upconversion capabilities as a set of macromolecules with controlled molecular structure. In Chapter 3, we investigate the effect of connectivity between annihilators in alternating co-polymer systems, discussing the impact on ground state photophysical properties and upconversion efficiency. Finally in Chapter 4, we introduce an approach for using computational analysis as a high-throughput tool for identifying potential novel annihilator molecules.
52

The synthesis and cyclization of some new ketones containing nitrogen

Schlechter, Melvin M. January 1958 (has links)
no abstract provided by author / Master of Science
53

The preparation of some benzo[b]thiophene derivatives of anthracene and benz[a]anthracene

Henson, Paul Douglas January 1964 (has links)
Ph. D.
54

An investigation of isotropic and anisotropic magnetic field effects in fluorescent systems

Ferguson, Kelly-Anne January 2014 (has links)
Interest into the effects of weak static magnetic fields on chemical reactions involving spin correlated radical pairs has increased over the last few decades, particularly as scientists have become more curious about the mechanisms by which animals can sense and respond to small variations in the Earth's weak (50 µT) magnetic field. The magnetosensitivity of radical pairs, as dictated by the radical pair mechanism, lies at the heart of the most heavily supported hypothesis of this magnetoreception phenomenon. This thesis is concerned with the spectroscopic investigations of isotropic and anisotropic magnetic field effects in fluorescent systems. First of all, an introduction to spin chemistry and magnetoreception is presented. In chapter 3, the effects of weak radiofrequency oscillating fields when applied in combination with weak static fields are explored in isotropic solutions. The validity of the high-field model, typically used to describe spin dynamics in magnetic resonance, is tested and the effects of orientation and field strength on magnetic field effects are discussed in detail. In Chapter 4, a range of exciplex systems are studied by fluorescence methods and their energetics are explored. The factors which determine the formation of an exciplex, i.e. the complex equilibrium between the exciplex and the spin-correlated radical pair,are considered and used to assess the existence and magnitude of MFEs. Radical pair systems investigated, using MARY spectroscopy, with respect to their potential to act as model chemical compasses are introduced in chapter 5. Solid-state media are used to align the exciplex systems to detect any magnetic field direction dependence. Finally, in chapter 6, AMELIA, an experiment which can directly measure the anisotropic magnetic field response of a system, is presented and applied successfully to systems to detect directly the anisotropic field response of a photoexcited anthracene crystal.
55

THE SOLUBILITY OF HYDROPHOBIC POLLUTANTS IN WATER-COSOLVENT MIXTURES

Morris, Kenneth Robert, 1951- January 1986 (has links)
No description available.
56

Aquatic Heterotrophic Bacteria Active in the Biotransformation of Anthracene and Pentachlorophenol

Entezami, Azam A. (Azam Alsadat) 08 1900 (has links)
Dominant genera of bacteria were isolated from three river waters during anthracene and pentachlorophenol biotransformation studies. The genera Pseudomonas, Acinetobacter, Micrococcus, Chromobacterium, Alcaligenes, Azomonos, Bacillus, and Flavobacterium were capable of biotransforming one or both of these compounds. These isolates were subjected to further biotransformation tests, including river water and a basal salt medium with and without additional glucose. The results of these experiments were evaluated statistically. It was concluded that only a limited number of the bacteria identified were able to transform these chemicals in river water. The addition of glucose to the growth medium significantly affected the biotransformation of these chemicals. It was also determined that the size of the initial bacterial population is not a factor in determining whether biotransformation of anthracene or pentachlorophenol can occur.
57

Caractérisation du potentiel de dégradation de matières organiques naturelle (litière) et anthropique (HAP) par les communautés microbiennes issue du milieu littoral méditerranéen

Qasemian, Leila 02 February 2012 (has links)
Les écosystèmes méditerranéens littoraux sont soumis à divers stress environnementaux naturels (stress hydrique et halin) et anthropiques susceptibles de s'intensifier dans les prochaines décennies. Dans ce contexte, le fonctionnement des communautés microbiennes - encore très peu étudiés dans de tels milieux - était important à préciser. L'effet du stress halin sur la transformation de la matière organique dans la litière de pin d'Alep issues des calanques de Marseille a été estimé ainsi que le potentiel de biodégradation d'un polluant chronique, l'anthracène, un Hydrocarbures Aromatiques Polycycliques. Différents approches in situ, ex situ et in vitro ont été utilisées en associant différentes méthodes afin de mesurer l'état fonctionnel du milieu (activités enzymatiques, respirométrie basale), la diversité fonctionnelle microbienne (Catabolic Level Physiological Profile), la biomasse microbienne et l'évolution chimique de la matière organique (RMN du solide du 13C). En mésocosmes, les laccases, induites par la présence d'anthracène, ont contribué à son oxydation et ont été séquencées par LC/MS/MS afin de déterminer les espèces fongiques à l'origine de leur synthèse. Les résultats montrent que certaines activités enzymatiques du cycle du carbone sont peu affectées par la salinité et l'apport d'anthracène. Toutefois la diversité fonctionnelle des communautés autochtones de litière de pin d'Alep issues de ces environnements est modifiée à une échelle micro-locale par l'effet marin. Par ailleurs les réponses fonctionnelles face à l'apport d'anthracène des communautés microbiennes de litières de pin d'Alep en zone continentale sont différentes de celles des zones littorales / Mediterranean coastal ecosystems are subjected to various natural and anthropogenic environmental pressures which are supposed to be enhanced because of climatic changes. Little is known about microbial community functioning in such ecosystems. Our site of study is located in the Calanques of Marseille, a hot spot of biodiversity. The effect of salinity (via sea spray exposure) on microbial communities and their ability to transform organic matter in an Aleppo pine litter have been studied as well as the potential of autochthonous microorganisms to transform anthracene used as a polycyclic aromatic hydrocarbon model. To do so, different approaches (in situ, ex situ and in vitro experimental design) were used and we combined various methods such as enzyme activities (laccase, cellulase, phosphatase, lipase), CLPP (Biolog ECO and FF plates), respirometry (basal and induced) and litter chemical characterization (solid-state 13C NMR). Laccases were induced by anthracene in mesocosms and oxidized this compound (with anthraquinone as an intermediate). These enzymes were sequenced by LC/MS/MS to determine the fungal strains responsible for their production. We also found that enzyme activities were not strongly influenced by salinity or anthracene inputs. On the other hand, functional diversity was structured at a small-spatial scale. Moreover, functional responses of microbial communities from inland areas strongly differ from those of coastal areas regarding anthracene inputs since no laccase induction was observed in inland litter.
58

Investigation of Electroluminescence Degradation in Anthracene-based Organic Light-Emitting Devices

Wang, Qi January 2010 (has links)
Organic light-emitting devices (OLEDs) have attracted significant attention because of their unique advantages for flat panel display applications. However, the relatively limited electroluminescence (EL) stability of blue emitting OLEDs continues to limit the commercialization of full color OLED displays. In most cases, the decrease in EL efficiency is also accompanied by a loss in blue color purity. Thus, the understanding of the degradation mechanisms of both the EL efficiency loss and color purity loss and the corresponding solutions to device degradation are required. In this thesis, electrical aging mechanism in anthracene-based OLEDs is investigated by using a number of techniques, including delayed EL measurements. The studies reveal that electrical aging is associated with an increasing concentration of an intermolecular species with a weak characteristic luminescence at around 535 nm. This species is capable of trapping charges, and thus plays a role as an electron-hole recombination center with prolonged electrical driving. Weak green luminescence from this species leads to an increased green/blue emission ratio, and causes the color purity loss in aged devices. The results also suggest that this species is also efficient in dissipating excitation energy non-radiatively, hence is capable of quenching singlet excitons in anthracene-based OLEDs, contributing to the observed efficiency loss with electrical aging. Moreover, the photo-stability of the organic/metal cathode interface in OLEDs is studied. Irradiating OLEDs by external illumination is found to result in a gradual increase in driving voltage and decrease in EL efficiency. This photo-induced degradation in device performance is found to be caused by changes at the organic/metal cathode interface that lead to a deterioration in electron injection. Evidence of photodegradation of the same interface, inherently, by device own EL, is also reported. The results uncover an important degradation mechanism in OLEDs and shed the light on a phenomenon that might limit the stability of other organic optoelectronic and photovoltaic devices.
59

Synthesis Of Novel Blue-emitting Poly(arylene ether)s with Application to Light Emitting Diodes

Chang, Ming-sian 19 July 2012 (has links)
In this thesis, a novel blue Poly (arylene ether) s polymer was prepared for the organic polymer light emitting diodes which was composed of the main material anthracene difluoro monomer derivatives, and object material of triphenylamine with the extension structure similar to the literature seen BD-1 asymmetric derivatives, as the hole transport material of carbazole of the diol derivatives. In general, Anthracene derivatives and BD-1, often seen in the literature as the host, guest blue polymer doping, the main use to Forster energy transfer to transfer energy to the guest, so it has good luminous efficiency. Anthracene, flat Good, easy to crystallization during evaporation, resulting in leakage generated; and the deposition of the multilayer structure will hinder charge injection to the emitting layer. From the angle of the molecular design of this study. (1) Use of the CF bond and Carbazole increase the steric hindrance of the polymer chain and change by fluoride compounds of the highest occupied molecular orbital - lowest unoccupied molecular orbital energy level. (2) The hole transport layer to import into the emitting layer. The two monomers Anthracene derivatives fluoride monomer the Carbazole of diol derivatives via nucleophilic polycondensation synthesis of a novel in proper proportion, Blue polymer. Component parts, the Blue poly aromatic ether polymer doped with a small amount of blue light-emitting guest as a component layer of the component structure: ITO / PEDOT: PSS / emitting layer / LiF / Al light-emitting layer can make use of spin coating of solvent process, and its advantage is the convenience of the process and a large area. The undoped guest before the Blue polymer production the PLED starting voltage can be reduced to 4.5 V, and maximum brightness 7 466 cd/m2, efficiency as high as 4.2 cd / A. C.I.E. coordinates of (0.15,0.08), very close to the official regulations of the NTSC Blue coordinates (0.14,0.08). When doped with 3% of the guest, the starting voltage can be reduced to 4.5 V, maximum brightness of 12104 cd/m2 and efficiency as high as 5.79 cd/A.
60

The study of the transition metal complexes of benzene and dewar benzene derivatives

Yeh, Po-Chen 31 July 2000 (has links)
none

Page generated in 0.0312 seconds