• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • Tagged with
  • 19
  • 19
  • 19
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cell Targeted Ribosome Inactivating Proteins Derived from Protein Combinatorial Libraries

Perampalam, Subodini 01 August 2008 (has links)
Combinatorial protein libraries based on a protein template offer a vast potential for deriving protein variants harboring new receptor specificity while retaining other tem-plate functions to serve as library search-engines, cell-routing sequences and therapeutic domains. This concept was tested with the design and synthesis of protein libraries where short random peptide motifs were embedded directly within the catalytic A subunit of the bacterial ribosome-inactivating protein (RIP) known as Shiga-like toxin 1 (SLT-1). More precisely, a seven amino acid peptide epitope (PDTRPAP) was inserted between residues 245-246 of its A subunit (SLT-1APDTRPAP) and shown to preserve catalytic function while exposing the epitope. SLT-1 A chain libraries harboring tripep-tide and heptapeptide random elements were subsequently constructed, screened and shown to express more than 90% of expected cytotoxic A chain variants. Finally, more than 9,000 purified SLT-1 A chain variants were screened using their ribosome-inactivating function in a cell-based assay to identify mutants that are able to kill human melanoma 518-A2 cells. This search led to the striking discovery of a single chain RIP that displays selectivity for a panel of human melanoma cell lines as well as minimal immunogenicity when injected repeatedly into mice. This directed evolution of a RIP template provides a broad platform for identifying cell type specific cytotoxic agents.
12

Dialkynylimidazoles as irreversible MAPK inhibitors, kinase docking site probes, and anti-cancer agents

Li, Jing, Ph. D. 15 January 2013 (has links)
This dissertation research was aimed at investigating an interesting class of 1,2-dialkynylimidazoles as: 1. irreversible p38 MAP kinase α-isoform (p38α) inhibitors; 2. p38α docking site probes; 3. anti-cancer agents. Based on the mild, thermal rearrangement of 1,2-dialkynylimidazoles to reactive carbene or diradical intermediates, a series of 1,2-dialkynylimidazoles was designed as potential irreversible p38α inhibitors. The synthesis of these dialkynylimidazoles and their kinase inhibition activity were reported. Interestingly, one of the 1-ethynyl-substituted dialkynylimidazoles is a potent (IC50 = 200 nM) and selective inhibitor of p38α. Additionally, this compound covalently modifies p38α as determined by ESI-MS after 12 h incubation at 37 °C. The unique kinase inhibition, covalent kinase adduct formation, and minimal CYP450 2D6 inhibition by this compound demonstrate that dialkynylimidazoles are a new, promising class of p38α inhibitors. Blocking docking interactions between kinase network partners is a promising alternative approach for selectively inhibiting kinases. The second project involves the identification of a new class of small molecules, covalent p38α MAP kinase docking site probes. We proposed that the mechanism may involve the addition of a thiol to the N-ethynyl group. Moreover, we demonstrated that such probes can be used fluorescently to label p38α both in vitro and in cells via azide-alkyne “Click” chemistry. This serves as the basis of an assay that can be used to identify inhibitors that specifically target the substrate docking site of p38α. The last project was focused on evaluating a new class of 1,2-dialkynylimidazoles as anti-cancer agents. One 1,2-dialkynylimidazole analog was found to be cytotoxic against a range of human cancer lines and to induce apoptosis in the human non-small cell lung cancer cell line A549. In order to elucidate the relationship between the structural basis and role of the thermal generation of diradical or carbene intermediates, a series of dialkynylimidazoles and related N-alkynylimidazoles was prepared and their cytotoxicity was determined against A549 cell line. Although the experimentally determined activation energy is in excellent agreement with that predicated from the DFT calculation, there is no correlation between the rate of Bergman cyclization and cytotoxicity to A549 cells. An alternative mechanism was proposed involving the unexpected selective thiol addition to the N-ethynyl group of certain 1,2-dialkynylimidazoles. / text
13

Investigating the anti-cancer activity of novel phenothiazines in glioblastoma

Omoruyi, Sylvester Ifeanyi January 2018 (has links)
Philosophiae Doctor - PhD / Glioblastoma multiforme (GBM) remains the most malignant of all primary adult brain tumours. It is a highly invasive and vascularized neoplasm with limited treatment options and very low survival rate. GBM tumours are heterogeneous in nature with cellular hierarchy and at the apex of this hierarchy are the glioblastoma stem cells, known to promote tumourigenesis and resistance to chemotherapeutic agents and tumour recurrence. Currently, the standard care for GBM involves surgical resection, radiation, and chemotherapy treatment with temozolomide. Unfortunately, median survival after treatment is still daunting and tumour relapse is very frequent. Indeed, patients with recurrent glioblastoma have less than a year survival. To address this, novel therapies need to be developed with the early introduction of promising agents into clinical trials and subsequent approval for use. Importantly, for these novel therapies to be approved for GBM, they need to be safe, effective as well as being able to penetrate the blood-brain barrier (BBB). Due to the high cost and process time for the development of new drugs, existing approved drugs are currently being repurposed for new indications and this is gaining significance in clinical pharmacology as it allows rapid delivery of useful drugs from bench to bedside. Drugs of the antipsychotic class are well known to cross the BBB due to their neuroleptic action. To this end, the aim of this study was to identify and characterize the anti-cancer activities of novel phenothiazine-derivatives belonging to the antipsychotic class of drugs in glioblastoma. To achieve this, several novel phenothiazine-derivatives were initially screened for possible anti-cancer activity in the U87 and U251 malignant GBM cells. Two lead compounds, DS00326 and DS00329, were identified and their anti-cancer activities were determined in U87 and U251 cells as well as in primary patient-derived xenograft (PDX) glioblastoma cultures. DS00326 and DS00329 significantly inhibited glioblastoma cell viability, with minimal effects observed in the non-cancerous FG0 fibroblasts. The IC50 values of DS00326 and DS00329 for U251, U87 and PDX cells ranged from 1.61 to 12.53μM. Flow cytometry analyses showed that DS00326 and DS00329 treatment led to an increase in the G1 population of cells. Additionally, DS00326 and DS00329 induced double-strand DNA breaks, which lead to activation of the canonical DNA damage response pathway. Furthermore, DS00326 and DS00329 induced apoptosis as shown by morphological markers, flow cytometry with annexin V-FITC/propidium iodide staining, as well as western blotting with an antibody to detect levels of cleaved PARP. Interestingly, treatment with DS00326 and DS00329 also induced autophagy as evident by the increase of acidic vesicular organelles in cells following staining with acridine orange as well as an increase in levels of the autophagy marker LC3-II. Autophagy was seen as a pro-death pathway in the U87 and U251 cells as inhibition of autophagy led to a reversal of cytotoxicity and consequently increased cell survival. Moreover, it was demonstrated that DS00326 and DS00329 inhibited the PI3/Akt pathway while modulating the mitogen-activated protein kinases p38, ERK1/2 and JNK signalling pathways. Importantly DS00326 and DS00329 displayed anti-cancer stem cell activities by the inhibition of neurosphere formation and regulation of stem cell markers SOX2 and GFAP in PDX cells. Together, the findings from this study suggest that DS00326 and DS00329 may be effective in the treatment of glioblastoma and provide a strong rationale for further clinical studies exploiting phenothiazines and their derivatives as treatments for glioblastoma. / 2021-09-01
14

Synthesis and Evaluation of N6,5'-Bis-Ureido-5'-Amino-5'-Deoxyadenosine Derivatives: Novel Nucleosides with Antiproliferative and Protein Kinase Binding Activities

Oliveira, Marcelio 19 November 2009 (has links)
A new series of N6,5'-bis-ureido-5'-amino-5'-deoxyadenosine derivatives was prepared and evaluated for anticancer activities using the NCI 60 panel of human cancers. Certain of the derivatives showed promising activities (low micromolar GI50's) against several of the representative cancers. These included cell lines from the following general cell types in the NCI 60: Leukemia, Breast, Central Nervous System, Non-Small Cell Lung, Ovarian, Prostate, Renal, and Colon cancers. Select compounds were also screened for their affinities for protein kinases. The synthesis of the compounds was straightforward and involved N6 acylation with arylisocyanates, preceded by activation and nucleophilic substitution of the 5'-position to give the desired 5'-azido-5'-deoxyadenosine derivatives. Reduction of the 5'-azido function with either H2/Pd-C, or Ph3P/H2O, gave the desired 5'-amino-5' deoxyadenosine products. Acylation of the 5'-amino group with N-methyl 4-nitrophenylcarbamate gave the N6,5'-bis-ureido-5'-amino-5' deoxyadenosine products. Yields ranged from good (50–75%) to excellent (75–95%) for all synthetic transformations.
15

Modified Nucleosides Part A: A Platform for the Chemical Tagging of Ribonucleic Acids for Analysis by Mass Spectrometry Part B: Base-Modified Thymidines Exhibiting Cytotoxicity towards Cancer Cells

Borland, Kayla January 2019 (has links)
No description available.
16

Design and Synthesis of Stable Glucose Uptake Inhibitors

Roberts, Dennis A. January 2016 (has links)
No description available.
17

The hollow fiber assay for drug responsiveness in the Ewing's sarcoma family of tumors

Bibby, Michael C., Bridges, E.M., Burchill, S.A. 27 May 2009 (has links)
No / Objective: To investigate the use of the National Cancer Institute's hollow fiber assay (HFA) to evaluate and prioritize novel treatment strategies for clinical trials in the Ewing's sarcoma family of tumors (ESFT). Study design: The growth and morphology of ESFT cell lines in hollow fibers (HFs) was characterized in vitro and in vivo. Reliability and reproducibility were evaluated using doxorubicin. Results: The numbers of viable cells in all 6 ESFT cell lines increased with time in vitro (0 to 96 hours). The SKES-1 and A673 cell lines grew exponentially after implantation of HFs in nude mice at subcutaneous and intraperitoneal sites. ESFT cells formed highly organized distinctive morphology within the HFs in vitro and in vivo. The number of viable ESFT cells within the HFs decreased in a time-dependent (24 to 96 hours) and dose-dependent (1 to 10 mg/kg) manner after treatment with doxorubicin in vivo. Conclusions: The HFA is a versatile short-term in vivo model that may be exploited to predict efficacy of potential anticancer agents in ESFT cells. Tumor markers and pharmacodynamic endpoints may be quantified in the pure population of ESFT cells from within the HFs.
18

Cytotoxic hydrogen bridged ruthenium quinaldamide complexes showing induced cancer cell death by apoptosis

Lord, Rianne M., Allison, Simon J., Rafferty, K., Ghandhi, L., Pask, C.M., McGowan, P.C. 01 July 2016 (has links)
Yes / This report presents the first known p-cymene ruthenium quinaldamide complexes which are stabilised by a hydrogen-bridging atom, [{(p-cym)RuIIX(N,N)}{H+}{(N,N)XRuII(p-cym)}][PF6] (N,N = functionalised quinaldamide and X = Cl or Br). These complexes are formed by a reaction of [p-cymRu(μ-X)2]2 with a functionalised quinaldamide ligand. When filtered over NH4PF6, and under aerobic conditions the equilibrium of NH4PF6 ⇔ NH3 + HPF6 enables incorporation of HPF6 and the stabilisation of two monomeric ruthenium complexes by a bridging H+, which are counter-balanced by a PF6 counterion. X-ray crystallographic analysis is presented for six new structures with O⋯O distances of 2.420(4)–2.448(15) Å, which is significant for strong hydrogen bonds. Chemosensitivity studies against HCT116, A2780 and cisplatinresistant A2780cis human cancer cells showed the ruthenium complexes with a bromide ancillary ligand to be more potent than those with a chloride ligand. The 4’-fluoro compounds show a reduction in potency for both chloride and bromide complexes against all cell lines, but an increase in selectivity towards cancer cells compared to non-cancer ARPE-19 cells, with a selectivity index >1. Mechanistic studies showed a clear correlation between IC50 values and induction of cell death by apoptosis
19

Synthesis of Taxol™ Analogs as Conformational Probes

Metaferia, Belhu B. 31 July 2002 (has links)
Taxol™, isolated from the bark of Taxus brevifolia in the late 1960s, and the semisynthetic analog Taxotere™ have proven clinical importance for the treatment of ovarian and breast cancer. Taxol™ exerts its biological effect by binding to polymerized tubulin and stabilizing the resulting microtubules. Studies aimed at understanding the biologically active conformation of taxol and its binding environment on β-tubulin are described. This knowledge is important because it could lead to the design of structurally less complicated drugs with better efficacy and better bioavailability. Moreover, the information can be extended to other natural products that possess microtubule-stabilizing properties similar to Taxol™. In this work, the synthesis of a triply labeled taxol analog is described as well as REDOR studies of this compound complexed to tubulin are in progress. Macrocyclic analogs of taxol have been prepared and their biological activities were evaluated. Chemical modeling of these analogs and their activities agrees with the hypothesis that Taxol™ adopts T-shaped conformation. Difficulties were encountered with the key ring-closing metathesis strategy, suggesting that a more flexible and efficient macrocyclization method will be needed to synthesize additional macrocyclic analogs. / Ph. D.

Page generated in 0.109 seconds