• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High performance photonic probes and applications of optical tweezers to molecular motors

Jannasch, Anita 23 November 2017 (has links) (PDF)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
2

High performance photonic probes and applications of optical tweezers to molecular motors

Jannasch, Anita 21 December 2012 (has links)
Optical tweezers are a sensitive position and force transducer widely employed in physics and biology. In a focussed laser, forces due to radiation pressure enable to trap and manipulate small dielectric particles used as probes for various experiments. For sensitive biophysical measurements, microspheres are often used as a handle for the molecule of interest. The force range of optical traps well covers the piconewton forces generated by individual biomolecules such as kinesin molecular motors. However, cellular processes are often driven by ensembles of molecular machines generating forces exceeding a nanonewton and thus the capabilities of optical tweezers. In this thesis I focused, fifirst, on extending the force range of optical tweezers by improving the trapping e fficiency of the probes and, second, on applying the optical tweezers technology to understand the mechanics of molecular motors. I designed and fabricated photonically-structured probes: Anti-reflection-coated, high-refractive-index, core-shell particles composed of titania. With these probes, I significantly increased the maximum optical force beyond a nanonewton. These particles open up new research possibilities in both biology and physics, for example, to measure hydrodynamic resonances associated with the colored nature of the noise of Brownian motion. With respect to biophysical applications, I used the optical tweezers to study the mechanics of single kinesin-8. Kinesin-8 has been shown to be a very processive, plus-end directed microtubule depolymerase. The underlying mechanism for the high processivity and how stepping is affected by force is unclear. Therefore, I tracked the motion of yeast (Kip3) and human (Kif18A) kinesin-8s with high precision under varying loads. We found that kinesin-8 is a low-force motor protein, which stalled at loads of only 1 pN. In addition, we discovered a force-induced stick-slip motion, which may be an adaptation for the high processivity. Further improvement in optical tweezers probes and the instrument will broaden the scope of feasible optical trapping experiments in the future.
3

Coupled Plasmonic Nanostructures Based on Core-Shell Particles

Brasse, Yannic 23 July 2020 (has links)
Plasmonic nanoparticles feature remarkable optical and electronic properties in consequence of the excitation of conduction band electrons by visible light, which leads to collective oscillations. This so called localized surface plasmon resonance (LSPR) is utilized in the fields of photovoltaics, sensing, catalysis and optoelectronics. Especially, the emergence of optical metasurfaces—subwavelength structured surfaces with properties typically not occurring for homogeneous materials—has attracted significant attention for the applications mentioned above. However, their fabrication is usually complex and the materials often lack in situ tunability. Here, a colloidal approach is demonstrated for the preparation of optical metasurfaces with tunable properties. They are based on plasmonic gold nanoparticles, which were coated with three different shell materials to provide three different functionalities when coupled to plasmonic mirrors: i) Dye-labeled silica coatings exhibit strong enhancement of their fluorescent properties, as shown in this extensive single particle study. ii) Hydrogel shells are applied to receive switchable electric and magnetic properties in response to swelling of the gel. iii) Electrochromic polymer coatings facilitate the preparation of anti-reflective metasurfaces that feature tunable efficiency by changing the pH or applying a voltage. In addition, mechano-tunable plasmonic lattices are demonstrated. The material is based on self-assembled gold nanoparticles, which are embedded in a transparent elastomer matrix and feature pronounced surface lattice resonances (SLR). These tunable resonances could be applied for lasing, strain sensing, or controlling catalytic reactions. / Plasmonische Nanopartikel besitzen bemerkenswerte optische und elektronische Eigenschaften, die sie für Anwendungen in Bereichen der Katalyse, Sensorik, Optoelektronik, sowie der Nanooptik prädestinieren. Ihre Eigenschaften beruhen auf der Anregung von Leitungsbandelektronen zu kollektiven Oszillationen durch sichtbares Licht. Diese sogenannte Oberflächenplasmonenresonanz ist insbesondere für optische Metaoberflächen von Interesse, also Materialien mit strukturierten Oberflächen im Größenbereich unterhalb der sichtbaren Wellenlängen, welche Charakteristika aufweisen, die bei homogenen Materialien typischerweise nicht auftreten. Sie werden allerdings häufig mit aufwendigen Methoden hergestellt und sind in situ nicht justierbar. In dieser Arbeit werden kolloidale Ansätze zur Herstellung plasmonischer Metaoberflächen mit einstellbaren optischen und elektronischen Eigenschaften vorgestellt. Das Konzept basiert auf der Verwendung von plasmonischen Goldkernen, die mit drei unterschiedlichen funktionellen Schalen beschichtet und anschließend mit plasmonischen Spiegeln gekoppelt wurden: i) Farbstoffmarkierte Silicapartikel zeigen starke Fluoreszenz-verstärkung, wie in dieser ausführlichen Einzelpartikelstudie nachgewiesen wird. ii) Hydrogelbeschichtungen werden verwendet um schaltbare elektrische und magnetische Eigenschaften mittels Quellung zu erzeugen. iii) Elektrochrome Polymerhüllen fungieren als Antireflexschicht auf Goldoberflächen, deren Extinktion sich mittels Anlegen einer Spannung oder durch pH-Änderungen einstellen lässt. Neben diesen Ansätzen werden mechanisch einstellbare plasmonische Gitterstrukturen vorgestellt. Die selbstassemblierten und in transparentem Elastomer eingebetteten Goldnanopartikel weisen eine ausgeprägte Oberflächengitterresonanz auf. Diese kann für sensorische Zwecke in den Bereichen der Mikromechanik und der Katalyse, sowie für abstimmbare Laser verwendet werden.

Page generated in 0.0691 seconds