• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 80
  • 13
  • Tagged with
  • 169
  • 169
  • 105
  • 72
  • 41
  • 38
  • 33
  • 28
  • 23
  • 23
  • 22
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Sélection de modèles parcimonieux pour l’apprentissage statistique en grande dimension / Model selection for sparse high-dimensional learning

Mattei, Pierre-Alexandre 26 October 2017 (has links)
Le déferlement numérique qui caractérise l’ère scientifique moderne a entraîné l’apparition de nouveaux types de données partageant une démesure commune : l’acquisition simultanée et rapide d’un très grand nombre de quantités observables. Qu’elles proviennent de puces ADN, de spectromètres de masse ou d’imagerie par résonance nucléaire, ces bases de données, qualifiées de données de grande dimension, sont désormais omniprésentes, tant dans le monde scientifique que technologique. Le traitement de ces données de grande dimension nécessite un renouvellement profond de l’arsenal statistique traditionnel, qui se trouve inadapté à ce nouveau cadre, notamment en raison du très grand nombre de variables impliquées. En effet, confrontée aux cas impliquant un plus grand nombre de variables que d’observations, une grande partie des techniques statistiques classiques est incapable de donner des résultats satisfaisants. Dans un premier temps, nous introduisons les problèmes statistiques inhérents aux modelés de données de grande dimension. Plusieurs solutions classiques sont détaillées et nous motivons le choix de l’approche empruntée au cours de cette thèse : le paradigme bayésien de sélection de modèles. Ce dernier fait ensuite l’objet d’une revue de littérature détaillée, en insistant sur plusieurs développements récents. Viennent ensuite trois chapitres de contributions nouvelles à la sélection de modèles en grande dimension. En premier lieu, nous présentons un nouvel algorithme pour la régression linéaire bayésienne parcimonieuse en grande dimension, dont les performances sont très bonnes, tant sur données réelles que simulées. Une nouvelle base de données de régression linéaire est également introduite : il s’agit de prédire la fréquentation du musée d’Orsay à l’aide de données vélibs. Ensuite, nous nous penchons sur le problème de la sélection de modelés pour l’analyse en composantes principales (ACP). En nous basant sur un résultat théorique nouveau, nous effectuons les premiers calculs exacts de vraisemblance marginale pour ce modelé. Cela nous permet de proposer deux nouveaux algorithmes pour l’ACP parcimonieuse, un premier, appelé GSPPCA, permettant d’effectuer de la sélection de variables, et un second, appelé NGPPCA, permettant d’estimer la dimension intrinsèque de données de grande dimension. Les performances empiriques de ces deux techniques sont extrêmement compétitives. Dans le cadre de données d’expression ADN notamment, l’approche de sélection de variables proposée permet de déceler sans supervision des ensembles de gènes particulièrement pertinents. / The numerical surge that characterizes the modern scientific era led to the rise of new kinds of data united in one common immoderation: the simultaneous acquisition of a large number of measurable quantities. Whether coming from DNA microarrays, mass spectrometers, or nuclear magnetic resonance, these data, usually called high-dimensional, are now ubiquitous in scientific and technological worlds. Processing these data calls for an important renewal of the traditional statistical toolset, unfit for such frameworks that involve a large number of variables. Indeed, when the number of variables exceeds the number of observations, most traditional statistics becomes inefficient. First, we give a brief overview of the statistical issues that arise with high-dimensional data. Several popular solutions are presented, and we present some arguments in favor of the method utilized and advocated in this thesis: Bayesian model uncertainty. This chosen framework is the subject of a detailed review that insists on several recent developments. After these surveys come three original contributions to high-dimensional model selection. A new algorithm for high-dimensional sparse regression called SpinyReg is presented. It compares favorably to state-of-the-art methods on both real and synthetic data sets. A new data set for high-dimensional regression is also described: it involves predicting the number of visitors in the Orsay museum in Paris using bike-sharing data. We focus next on model selection for high-dimensional principal component analysis (PCA). Using a new theoretical result, we derive the first closed-form expression of the marginal likelihood of a PCA model. This allows us to propose two algorithms for model selection in PCA. A first one called globally sparse probabilistic PCA (GSPPCA) that allows to perform scalable variable selection, and a second one called normal-gamma probabilistic PCA (NGPPCA) that estimates the intrinsic dimensionality of a high-dimensional data set. Both methods are competitive with other popular approaches. In particular, using unlabeled DNA microarray data, GSPPCA is able to select genes that are more biologically relevant than several popular approaches.
122

Learning representations for robust audio-visual scene analysis / Apprentissage de représentations pour l'analyse robuste de scènes audiovisuelles

Parekh, Sanjeel 18 March 2019 (has links)
L'objectif de cette thèse est de concevoir des algorithmes qui permettent la détection robuste d’objets et d’événements dans des vidéos en s’appuyant sur une analyse conjointe de données audio et visuelle. Ceci est inspiré par la capacité remarquable des humains à intégrer les caractéristiques auditives et visuelles pour améliorer leur compréhension de scénarios bruités. À cette fin, nous nous appuyons sur deux types d'associations naturelles entre les modalités d'enregistrements audiovisuels (réalisés à l'aide d'un seul microphone et d'une seule caméra), à savoir la corrélation mouvement/audio et la co-occurrence apparence/audio. Dans le premier cas, nous utilisons la séparation de sources audio comme application principale et proposons deux nouvelles méthodes dans le cadre classique de la factorisation par matrices non négatives (NMF). L'idée centrale est d'utiliser la corrélation temporelle entre l'audio et le mouvement pour les objets / actions où le mouvement produisant le son est visible. La première méthode proposée met l'accent sur le couplage flexible entre les représentations audio et de mouvement capturant les variations temporelles, tandis que la seconde repose sur la régression intermodale. Nous avons séparé plusieurs mélanges complexes d'instruments à cordes en leurs sources constituantes en utilisant ces approches.Pour identifier et extraire de nombreux objets couramment rencontrés, nous exploitons la co-occurrence apparence/audio dans de grands ensembles de données. Ce mécanisme d'association complémentaire est particulièrement utile pour les objets où les corrélations basées sur le mouvement ne sont ni visibles ni disponibles. Le problème est traité dans un contexte faiblement supervisé dans lequel nous proposons un framework d’apprentissage de représentation pour la classification robuste des événements audiovisuels, la localisation des objets visuels, la détection des événements audio et la séparation de sources.Nous avons testé de manière approfondie les idées proposées sur des ensembles de données publics. Ces expériences permettent de faire un lien avec des phénomènes intuitifs et multimodaux que les humains utilisent dans leur processus de compréhension de scènes audiovisuelles. / The goal of this thesis is to design algorithms that enable robust detection of objectsand events in videos through joint audio-visual analysis. This is motivated by humans’remarkable ability to meaningfully integrate auditory and visual characteristics forperception in noisy scenarios. To this end, we identify two kinds of natural associationsbetween the modalities in recordings made using a single microphone and camera,namely motion-audio correlation and appearance-audio co-occurrence.For the former, we use audio source separation as the primary application andpropose two novel methods within the popular non-negative matrix factorizationframework. The central idea is to utilize the temporal correlation between audio andmotion for objects/actions where the sound-producing motion is visible. The firstproposed method focuses on soft coupling between audio and motion representationscapturing temporal variations, while the second is based on cross-modal regression.We segregate several challenging audio mixtures of string instruments into theirconstituent sources using these approaches.To identify and extract many commonly encountered objects, we leverageappearance–audio co-occurrence in large datasets. This complementary associationmechanism is particularly useful for objects where motion-based correlations are notvisible or available. The problem is dealt with in a weakly-supervised setting whereinwe design a representation learning framework for robust AV event classification,visual object localization, audio event detection and source separation.We extensively test the proposed ideas on publicly available datasets. The experimentsdemonstrate several intuitive multimodal phenomena that humans utilize on aregular basis for robust scene understanding.
123

Fully bayesian structure learning of bayesian networks and their hypergraph extensions / Estimation bayésienne de la structure des réseaux bayésiens puis d'hypergraphes

Datta, Sagnik 07 July 2016 (has links)
Dans cette thèse, j’aborde le problème important de l’estimation de la structure des réseaux complexes, à l’aide de la classe des modèles stochastiques dits réseaux Bayésiens. Les réseaux Bayésiens permettent de représenter l’ensemble des relations d’indépendance conditionnelle. L’apprentissage statistique de la structure de ces réseaux complexes par les réseaux Bayésiens peut révéler la structure causale sous-jacente. Il peut également servir pour la prédiction de quantités qui sont difficiles, coûteuses, ou non éthiques comme par exemple le calcul de la probabilité de survenance d’un cancer à partir de l’observation de quantités annexes, plus faciles à obtenir. Les contributions de ma thèse consistent en : (A) un logiciel développé en langage C pour l’apprentissage de la structure des réseaux bayésiens; (B) l’introduction d’un nouveau "jumping kernel" dans l’algorithme de "Metropolis-Hasting" pour un échantillonnage rapide de réseaux; (C) l’extension de la notion de réseaux Bayésiens aux structures incluant des boucles et (D) un logiciel spécifique pour l’apprentissage des structures cycliques. Notre principal objectif est l’apprentissage statistique de la structure de réseaux complexes représentée par un graphe et par conséquent notre objet d’intérêt est cette structure graphique. Un graphe est constitué de nœuds et d’arcs. Tous les paramètres apparaissant dans le modèle mathématique et différents de ceux qui caractérisent la structure graphique sont considérés comme des paramètres de nuisance. / In this thesis, I address the important problem of the determination of the structure of complex networks, with the widely used class of Bayesian network models as a concrete vehicle of my ideas. The structure of a Bayesian network represents a set of conditional independence relations that hold in the domain. Learning the structure of the Bayesian network model that represents a domain can reveal insights into its underlying causal structure. Moreover, it can also be used for prediction of quantities that are difficult, expensive, or unethical to measure such as the probability of cancer based on other quantities that are easier to obtain. The contributions of this thesis include (A) a software developed in C language for structure learning of Bayesian networks; (B) introduction a new jumping kernel in the Metropolis-Hasting algorithm for faster sampling of networks (C) extending the notion of Bayesian networks to structures involving loops and (D) a software developed specifically to learn cyclic structures. Our primary objective is structure learning and thus the graph structure is our parameter of interest. We intend not to perform estimation of the parameters involved in the mathematical models.
124

Quelques exemples de jeux à champ moyen / Some examples of mean field games

Coron, Jean-Luc 18 December 2017 (has links)
La théorie des jeux à champ moyen fut introduite en 2006 par Jean-Michel Lasry et Pierre-Louis Lions. Elle permet l'étude de la théorie des jeux dans certaines configurations où le nombre de joueurs est trop grand pour espérer une résolution pratique. Nous étudions la théorie des jeux à champ moyen sur les graphes en nous appuyant sur les travaux d'Olivier Guéant que nous étendrons à des formes plus générales d'Hilbertien. Nous étudierons aussi les liens qui existent entres les K-moyennes et les jeux à champ moyen ce qui permettra en principe de proposer de nouveaux algorithmes pour les K-moyennes grâce aux techniques de résolution numérique propres aux jeux à champ moyen. Enfin nous étudierons un jeu à champ moyen à savoir le problème "d'heure de début d'une réunion" en l'étendant à des situations où les agents peuvent choisir entre deux réunions. Nous étudierons de manière analytique et numérique l'existence et la multiplicité des solutions de ce problème. / The mean field game theory was introduced in 2006 by Jean-Michel Lasry and Pierre-Louis Lions. It allows us to study the game theory in some situations where the number of players is too high to be able to be solved in practice. We will study the mean field game theory on graphs by learning from the studies of Oliver Guéant which we will extend to more generalized forms of Hilbertian. We will also study the links between the K-means and the mean field game theory. In principle, this will offer us new algorithms for solving the K-means thanks to the techniques of numerical resolutions of the mean field games. Findly, we will study a mean field game called the "starting time of a meeting". We will extend it to situations where the players can choose between two meetings. We will study analytically and numerically the existence and multiplicity of the solutions to this problem.
125

Mathematical modelling of neoadjuvant antiangiogenic therapy and prediction of post-surgical metastatic relapse in breast cancer patients / Modélisation mathématique de la thérapie antiangiogénique pré-opératoire et prédiction de la rechute métastatique post-opératoire dans le cancer du sein

Nicolò, Chiara 14 October 2019 (has links)
Pour les patients diagnostiqués avec un cancer au stade précoce, les décisions de traitement dépendent de l’évaluation du risque de rechute métastatique. Les outils de pronostic actuels sont fondés sur des approches purement statistiques, sans intégrer les connaissances disponibles sur les processus biologiques à l’oeuvre. L’objectif de cette thèse est de développer des modèles prédictifs du processus métastatique en utilisant une approche de modélisation mécaniste et la modélisation à effets mixtes. Dans la première partie, nous étendons un modèle mathématique du processus métastatique pour décrire la croissance de la tumeur primaire et de la masse métastatique totale chez des souris traitées avec le sunitinib (un inhibiteur de tyrosine kinase ayant une action anti-angiogénique) administré comme traitement néoadjuvant (i.e. avant exérèse de la tumeur primaire). Le modèle est utilisé pour tester des hypothèses expliquant les effets différentiels du sunitinib sur la tumeur primaire et les métastases. Des algorithmes d’apprentissage statistique sont utilisés pour évaluer la valeur prédictive des biomarqueurs sur les paramètres du modèle.Dans la deuxième partie de cette thèse, nous développons un modèle mécaniste pour la prédiction du temps de rechute métastatique et le validons sur des données cliniques des patientes atteintes d’un cancer du sein localisé. Ce modèle offre des prédictions personnalisées des métastases invisibles au moment du diagnostic, ainsi que des simulations de la croissance métastatique future, et il pourrait être utilisé comme un outil de prédiction individuelle pour aider à la gestion des patientes atteintes de cancer du sein. / For patients diagnosed with early-stage cancer, treatment decisions depend on the evaluation of the risk of metastatic relapse. Current prognostic tools are based on purely statistical approaches that relate predictor variables to the outcome, without integrating any available knowledge of the underlying biological processes. The purpose of this thesis is to develop predictive models of the metastatic process using an established mechanistic modelling approach and the statistical mixed-effects modelling framework.In the first part, we extend the mathematical metastatic model to describe primary tumour and metastatic dynamics in response to neoadjuvant sunitinib in clinically relevant mouse models of spontaneous metastatic breast and kidney cancers. The calibrated model is then used to test possible hypothesis for the differential effects of sunitinib on primary tumour and metastases, and machine learning algorithms are applied to assess the predictive power of biomarkers on the model parameters.In the second part of this thesis, we develop a mechanistic model for the prediction of the time to metastatic relapse and validate it on a clinical dataset of breast cancer patients. This model offers personalised predictions of the invisible metastatic burden at the time of diagnosis, as well as forward simulations of metastatic growth, and it could be used as a personalised prediction tool to assist in the routine management of breast cancer patients.
126

Measuring RocksDB performance and adaptive sampling for model estimation

Laprés-Chartrand, Jean 01 1900 (has links)
This thesis focuses on two topics, namely statistical learning and the prediction of key performance indicators in the performance evaluation of a storage engine. The part on statistical learning presents a novel algorithm adjusting the sampling size for the Monte Carlo approximation of the function to be minimized, allowing a reduction of the true function at a given probability and this, at a lower numerical cost. The sampling strategy is embedded in a trust-region algorithm, using the Fisher Information matrix, also called BHHH approximation, to approximate the Hessian matrix. The sampling strategy is tested on a logit model generated from synthetic data. Numerical results exhibit a significant reduction in the time required to optimize the model when an adequate smoothing is applied to the function. The key performance indicator prediction part describes a novel strategy to select better settings for RocksDB that optimize its throughput, using the log files to analyze and identify suboptimal parameters, opening the possibility to greatly accelerate modern storage engine tuning. / Ce mémoire s’intéresse à deux sujets, un relié à l’apprentisage statistique et le second à la prédiction d’indicateurs de performance dans un système de stockage de type clé-valeur. La partie sur l’apprentissage statistique développe un algorithme ajustant la taille d’échantillonnage pour l’approximation Monte Carlo de la fonction à minimiser, permettant une réduction de la véritable fonction avec une probabilité donnée, et ce à un coût numérique moindre. La stratégie d’échantillonnage est développée dans un contexte de région de confiance en utilisant la matrice d’information de Fisher, aussi appelée approximation BHHH de la matrice hessienne. La stratégie d’échantillonnage est testée sur un modèle logit généré à partir de données synthétiques suivant le même modèle. Les résultats numériques montrent une réduction siginificative du temps requis pour optimiser le modèle lorsqu’un lissage adéquat est appliqué. La partie de prédiction d’indicateurs de performance décrit une nouvelle approche pour optimiser la vitesse maximale d’insertion de paire clé-valeur dans le système de stockage RocksDB. Les fichiers journaux sont utilisés pour identifier les paramètres sous-optimaux du système et accélérer la recherche de paramètres optimaux.
127

Estimation de profondeur à partir d'images monoculaires par apprentissage profond / Depth estimation from monocular images by deep learning

Moukari, Michel 01 July 2019 (has links)
La vision par ordinateur est une branche de l'intelligence artificielle dont le but est de permettre à une machine d'analyser, de traiter et de comprendre le contenu d'images numériques. La compréhension de scène en particulier est un enjeu majeur en vision par ordinateur. Elle passe par une caractérisation à la fois sémantique et structurelle de l'image, permettant d'une part d'en décrire le contenu et, d'autre part, d'en comprendre la géométrie. Cependant tandis que l'espace réel est de nature tridimensionnelle, l'image qui le représente, elle, est bidimensionnelle. Une partie de l'information 3D est donc perdue lors du processus de formation de l'image et il est d'autant plus complexe de décrire la géométrie d'une scène à partir d'images 2D de celle-ci.Il existe plusieurs manières de retrouver l'information de profondeur perdue lors de la formation de l'image. Dans cette thèse nous nous intéressons à l’estimation d'une carte de profondeur étant donné une seule image de la scène. Dans ce cas, l'information de profondeur correspond, pour chaque pixel, à la distance entre la caméra et l'objet représenté en ce pixel. L'estimation automatique d'une carte de distances de la scène à partir d'une image est en effet une brique algorithmique critique dans de très nombreux domaines, en particulier celui des véhicules autonomes (détection d’obstacles, aide à la navigation).Bien que le problème de l'estimation de profondeur à partir d'une seule image soit un problème difficile et intrinsèquement mal posé, nous savons que l'Homme peut apprécier les distances avec un seul œil. Cette capacité n'est pas innée mais acquise et elle est possible en grande partie grâce à l'identification d'indices reflétant la connaissance a priori des objets qui nous entourent. Par ailleurs, nous savons que des algorithmes d'apprentissage peuvent extraire ces indices directement depuis des images. Nous nous intéressons en particulier aux méthodes d’apprentissage statistique basées sur des réseaux de neurones profond qui ont récemment permis des percées majeures dans de nombreux domaines et nous étudions le cas de l'estimation de profondeur monoculaire. / Computer vision is a branch of artificial intelligence whose purpose is to enable a machine to analyze, process and understand the content of digital images. Scene understanding in particular is a major issue in computer vision. It goes through a semantic and structural characterization of the image, on one hand to describe its content and, on the other hand, to understand its geometry. However, while the real space is three-dimensional, the image representing it is two-dimensional. Part of the 3D information is thus lost during the process of image formation and it is therefore non trivial to describe the geometry of a scene from 2D images of it.There are several ways to retrieve the depth information lost in the image. In this thesis we are interested in estimating a depth map given a single image of the scene. In this case, the depth information corresponds, for each pixel, to the distance between the camera and the object represented in this pixel. The automatic estimation of a distance map of the scene from an image is indeed a critical algorithmic brick in a very large number of domains, in particular that of autonomous vehicles (obstacle detection, navigation aids).Although the problem of estimating depth from a single image is a difficult and inherently ill-posed problem, we know that humans can appreciate distances with one eye. This capacity is not innate but acquired and made possible mostly thanks to the identification of indices reflecting the prior knowledge of the surrounding objects. Moreover, we know that learning algorithms can extract these clues directly from images. We are particularly interested in statistical learning methods based on deep neural networks that have recently led to major breakthroughs in many fields and we are studying the case of the monocular depth estimation.
128

Machine Learning for Network Resource Management / Apprentissage Automatique pour la Gestion des Ressources Réseau

Ben Hassine, Nesrine 06 December 2017 (has links)
Une exploitation intelligente des données qui circulent sur les réseaux pourrait entraîner une amélioration de la qualité d'expérience (QoE) des utilisateurs. Les techniques d'apprentissage automatique offrent des fonctionnalités multiples, ce qui permet d’optimiser l'utilisation des ressources réseau.Dans cette thèse, deux contextes d’application sont étudiés : les réseaux de capteurs sans fil (WSNs) et les réseaux de contenus (CDNs). Dans les WSNs, il s’agit de prédire la qualité des liens sans fil afin d’améliorer la qualité des routes et donc d’augmenter le taux de remise des paquets ce qui améliore la qualité de service offerte à l’utilisateur. Dans les CDNs, il s’agit de prédire la popularité des contenus vidéo afin de mettre en cache les contenus les plus populaires, au plus près des utilisateurs qui les demandent. Ceci contribue à réduire la latence pour satisfaire les requêtes des utilisateurs.Dans ce travail, nous avons orchestré des techniques d’apprentissage issues de deux domaines différents, à savoir les statistiques et le Machine Learning. Chaque technique est représentée par un expert dont les paramètres sont réglés suite à une analyse hors-ligne. Chaque expert est chargé de prédire la prochaine valeur de la métrique. Vu la variété des experts retenus et comme aucun d’entre eux ne domine toujours tous les autres, un deuxième niveau d’expertise est nécessaire pour fournir la meilleure prédiction. Ce deuxième niveau est représenté par un expert particulier, appelé forecaster. Le forecaster est chargé de fournir des prédictions à partir des prédictions fournies par un sous ensemble des meilleurs experts.Plusieurs méthodes d’identification de ce sous ensemble sont étudiées. Elles dépendent de la fonction de perte utilisée pour évaluer les prédictions des experts et du nombre k, représentant les k meilleurs experts. Les tâches d’apprentissage et de prédiction sont effectuées en-ligne sur des data sets réels issus d’un WSN déployé à Stanford et de YouTube pour le CDN. La méthodologie adoptée dans cette thèse s’applique à la prédiction de la prochaine valeur d’une série temporelle.Plus précisément, nous montrons comment dans le contexte WSN, la qualité des liens peut être évaluée par le Link Quality Indicator (LQI) et comment les experts Single Exponential Smoothing (SES) et Average Moving Window (AMW) peuvent prédire la prochaine valeur de LQI. Ces experts réagissent rapidement aux changements des valeurs LQI que ce soit lors d’une brusque baisse de la qualité du lien ou au contraire lors d’une forte augmentation de la qualité. Nous proposons deux forecasters, Exponential Weighted Average (EWA) et Best Expert (BE), et fournissons la combinaison Expert-Forecaster permettant de fournir la meilleure prédiction.Dans le contexte des CDNs, nous évaluons la popularité de chaque contenu vidéo par le nombre journalier de requêtes. Nous utilisons à la fois des experts statistiques (ARMA) et des experts issus du Machine Learning (DES, régression polynômiale). Nous introduisons également des forecasters qui diffèrent par rapport à l’horizon des observations utilisées pour la prédiction, la fonction de perte et le nombre d’experts utilisés. Ces prédictions permettent de décider quels contenus seront placés dans les caches proches des utilisateurs. L’efficacité de la technique de caching basée sur la prédiction de la popularité est évaluée en termes de hit ratio et d’update ratio. Nous mettons en évidence les apports de cette technique de caching par rapport à un algorithme de caching classique, Least Frequently Used (LFU).Cette thèse se termine par des recommandations concernant l’utilisation des techniques d’apprentissage en ligne et hors-ligne pour les réseaux (WSN, CDN). Au niveau des perspectives, nous proposons différentes applications où l’utilisation de ces techniques permettrait d’améliorer la qualité d’expérience des utilisateurs mobiles ou des utilisateurs des réseaux IoT. / An intelligent exploitation of data carried on telecom networks could lead to a very significant improvement in the quality of experience (QoE) for the users. Machine Learning techniques offer multiple operating, which can help optimize the utilization of network resources.In this thesis, two contexts of application of the learning techniques are studied: Wireless Sensor Networks (WSNs) and Content Delivery Networks (CDNs). In WSNs, the question is how to predict the quality of the wireless links in order to improve the quality of the routes and thus increase the packet delivery rate, which enhances the quality of service offered to the user. In CDNs, it is a matter of predicting the popularity of videos in order to cache the most popular ones as close as possible to the users who request them, thereby reducing latency to fulfill user requests.In this work, we have drawn upon learning techniques from two different domains, namely statistics and Machine Learning. Each learning technique is represented by an expert whose parameters are tuned after an off-line analysis. Each expert is responsible for predicting the next metric value (i.e. popularity for videos in CDNs, quality of the wireless link for WSNs). The accuracy of the prediction is evaluated by a loss function, which must be minimized. Given the variety of experts selected, and since none of them always takes precedence over all the others, a second level of expertise is needed to provide the best prediction (the one that is the closest to the real value and thus minimizes a loss function). This second level is represented by a special expert, called a forecaster. The forecaster provides predictions based on values predicted by a subset of the best experts.Several methods are studied to identify this subset of best experts. They are based on the loss functions used to evaluate the experts' predictions and the value k, representing the k best experts. The learning and prediction tasks are performed on-line on real data sets from a real WSN deployed at Stanford, and from YouTube for the CDN. The methodology adopted in this thesis is applied to predicting the next value in a series of values.More precisely, we show how the quality of the links can be evaluated by the Link Quality Indicator (LQI) in the WSN context and how the Single Exponential Smoothing (SES) and Average Moving Window (AMW) experts can predict the next LQI value. These experts react quickly to changes in LQI values, whether it be a sudden drop in the quality of the link or a sharp increase in quality. We propose two forecasters, Exponential Weighted Average (EWA) and Best Expert (BE), as well as the Expert-Forecaster combination to provide better predictions.In the context of CDNs, we evaluate the popularity of each video by the number of requests for this video per day. We use both statistical experts (ARMA) and experts from the Machine Learning domain (e.g. DES, polynomial regression). These experts are evaluated according to different loss functions. We also introduce forecasters that differ in terms of the observation horizon used for prediction, loss function and number of experts selected for predictions. These predictions help decide which videos will be placed in the caches close to the users. The efficiency of the caching technique based on popularity prediction is evaluated in terms of hit rate and update rate. We highlight the contributions of this caching technique compared to a classical caching algorithm, Least Frequently Used (LFU).This thesis ends with recommendations for the use of online and offline learning techniques for networks (WSN, CDN). As perspectives, we propose different applications where the use of these techniques would improve the quality of experience for mobile users (cellular networks) or users of IoT (Internet of Things) networks, based, for instance, on Time Slotted Channel Hopping (TSCH).
129

High-Order Inference, Ranking, and Regularization Path for Structured SVM / Inférence d'ordre supérieur, Classement, et Chemin de Régularisation pour les SVM Structurés

Dokania, Puneet Kumar 30 May 2016 (has links)
Cette thèse présente de nouvelles méthodes pour l'application de la prédiction structurée en vision numérique et en imagerie médicale.Nos nouvelles contributions suivent quatre axes majeurs.La première partie de cette thèse étudie le problème d'inférence d'ordre supérieur.Nous présentons une nouvelle famille de problèmes de minimisation d'énergie discrète, l'étiquetage parcimonieux, encourageant la parcimonie des étiquettes.C'est une extension naturelle des problèmes connus d'étiquetage de métriques aux potentiels d'ordre élevé.Nous proposons par ailleurs une généralisation du modèle Pn-Potts, le modèle Pn-Potts hiérarchique.Enfin, nous proposons un algorithme parallélisable à proposition de mouvements avec de fortes bornes multiplicatives pour l'optimisation du modèle Pn-Potts hiérarchique et l'étiquetage parcimonieux.La seconde partie de cette thèse explore le problème de classement en utilisant de l'information d'ordre élevé.Nous introduisons deux cadres différents pour l'incorporation d'information d'ordre élevé dans le problème de classement.Le premier modèle, que nous nommons SVM binaire d'ordre supérieur (HOB-SVM), optimise une borne supérieure convexe sur l'erreur 0-1 pondérée tout en incorporant de l'information d'ordre supérieur en utilisant un vecteur de charactéristiques jointes.Le classement renvoyé par HOB-SVM est obtenu en ordonnant les exemples selon la différence entre la max-marginales de l'affectation d'un exemple à la classe associée et la max-marginale de son affectation à la classe complémentaire.Le second modèle, appelé AP-SVM d'ordre supérieur (HOAP-SVM), s'inspire d'AP-SVM et de notre premier modèle, HOB-SVM.Le modèle correspond à une optimisation d'une borne supérieure sur la précision moyenne, à l'instar d'AP-SVM, qu'il généralise en permettant également l'incorporation d'information d'ordre supérieur.Nous montrons comment un optimum local du problème d'apprentissage de HOAP-SVM peut être déterminé efficacement grâce à la procédure concave-convexe.En utilisant des jeux de données standards, nous montrons empiriquement que HOAP-SVM surpasse les modèles de référence en utilisant efficacement l'information d'ordre supérieur tout en optimisant directement la fonction d'erreur appropriée.Dans la troisième partie, nous proposons un nouvel algorithme, SSVM-RP, pour obtenir un chemin de régularisation epsilon-optimal pour les SVM structurés.Nous présentons également des variantes intuitives de l'algorithme Frank-Wolfe pour l'optimisation accélérée de SSVM-RP.De surcroît, nous proposons une approche systématique d'optimisation des SSVM avec des contraintes additionnelles de boîte en utilisant BCFW et ses variantes.Enfin, nous proposons un algorithme de chemin de régularisation pour SSVM avec des contraintes additionnelles de positivité/negativité.Dans la quatrième et dernière partie de la thèse, en appendice, nous montrons comment le cadre de l'apprentissage semi-supervisé des SVM à variables latentes peut être employé pour apprendre les paramètres d'un problème complexe de recalage déformable.Nous proposons un nouvel algorithme discriminatif semi-supervisé pour apprendre des métriques de recalage spécifiques au contexte comme une combinaison linéaire des métriques conventionnelles.Selon l'application, les métriques traditionnelles sont seulement partiellement sensibles aux propriétés anatomiques des tissus.Dans ce travail, nous cherchons à déterminer des métriques spécifiques à l'anatomie et aux tissus, par agrégation linéaire de métriques connues.Nous proposons un algorithme d'apprentissage semi-supervisé pour estimer ces paramètres conditionnellement aux classes sémantiques des données, en utilisant un jeu de données faiblement annoté.Nous démontrons l'efficacité de notre approche sur trois jeux de données particulièrement difficiles dans le domaine de l'imagerie médicale, variables en terme de structures anatomiques et de modalités d'imagerie. / This thesis develops novel methods to enable the use of structured prediction in computer vision and medical imaging. Specifically, our contributions are four fold. First, we propose a new family of high-order potentials that encourage parsimony in the labeling, and enable its use by designing an accurate graph cuts based algorithm to minimize the corresponding energy function. Second, we show how the average precision SVM formulation can be extended to incorporate high-order information for ranking. Third, we propose a novel regularization path algorithm for structured SVM. Fourth, we show how the weakly supervised framework of latent SVM can be employed to learn the parameters for the challenging deformable registration problem.In more detail, the first part of the thesis investigates the high-order inference problem. Specifically, we present a novel family of discrete energy minimization problems, which we call parsimonious labeling. It is a natural generalization of the well known metric labeling problems for high-order potentials. In addition to this, we propose a generalization of the Pn-Potts model, which we call Hierarchical Pn-Potts model. In the end, we propose parallelizable move making algorithms with very strong multiplicative bounds for the optimization of the hierarchical Pn-Potts model and the parsimonious labeling.Second part of the thesis investigates the ranking problem while using high-order information. Specifically, we introduce two alternate frameworks to incorporate high-order information for the ranking tasks. The first framework, which we call high-order binary SVM (HOB-SVM), optimizes a convex upperbound on weighted 0-1 loss while incorporating high-order information using joint feature map. The rank list for the HOB-SVM is obtained by sorting samples using max-marginals based scores. The second framework, which we call high-order AP-SVM (HOAP-SVM), takes its inspiration from AP-SVM and HOB-SVM (our first framework). Similar to AP-SVM, it optimizes upper bound on average precision. However, unlike AP-SVM and similar to HOB-SVM, it can also encode high-order information. The main disadvantage of HOAP-SVM is that estimating its parameters requires solving a difference-of-convex program. We show how a local optimum of the HOAP-SVM learning problem can be computed efficiently by the concave-convex procedure. Using standard datasets, we empirically demonstrate that HOAP-SVM outperforms the baselines by effectively utilizing high-order information while optimizing the correct loss function.In the third part of the thesis, we propose a new algorithm SSVM-RP to obtain epsilon-optimal regularization path of structured SVM. We also propose intuitive variants of the Block-Coordinate Frank-Wolfe algorithm (BCFW) for the faster optimization of the SSVM-RP algorithm. In addition to this, we propose a principled approach to optimize the SSVM with additional box constraints using BCFW and its variants. In the end, we propose regularization path algorithm for SSVM with additional positivity/negativity constraints.In the fourth and the last part of the thesis (Appendix), we propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional metrics. Conventional metrics can cope partially - depending on the clinical context - with tissue anatomical properties. In this work we seek to determine anatomy/tissue specific metrics as a context-specific aggregation/linear combination of known metrics. We propose a weakly supervised learning algorithm for estimating these parameters conditionally to the data semantic classes, using a weak training dataset. We show the efficacy of our approach on three highly challenging datasets in the field of medical imaging, which vary in terms of anatomical structures and image modalities.
130

Vers des interfaces cérébrales adaptées aux utilisateurs : interaction robuste et apprentissage statistique basé sur la géométrie riemannienne / Toward user-adapted brain computer interfaces : robust interaction and machine learning based on riemannian geometry

Kalunga, Emmanuel 30 August 2017 (has links)
Au cours des deux dernières décennies, l'intérêt porté aux interfaces cérébrales ou Brain Computer Interfaces (BCI) s’est considérablement accru, avec un nombre croissant de laboratoires de recherche travaillant sur le sujet. Depuis le projet Brain Computer Interface, où la BCI a été présentée à des fins de réadaptation et d'assistance, l'utilisation de la BCI a été étendue à d'autres applications telles que le neurofeedback et l’industrie du jeux vidéo. Ce progrès a été réalisé grâce à une meilleure compréhension de l'électroencéphalographie (EEG), une amélioration des systèmes d’enregistrement du EEG, et une augmentation de puissance de calcul.Malgré son potentiel, la technologie de la BCI n’est pas encore mature et ne peut être utilisé en dehors des laboratoires. Il y a un tas de défis qui doivent être surmontés avant que les systèmes BCI puissent être utilisés à leur plein potentiel. Ce travail porte sur des aspects importants de ces défis, à savoir la spécificité des systèmes BCI aux capacités physiques des utilisateurs, la robustesse de la représentation et de l'apprentissage du EEG, ainsi que la suffisance des données d’entrainement. L'objectif est de fournir un système BCI qui peut s’adapter aux utilisateurs en fonction de leurs capacités physiques et des variabilités dans les signaux du cerveau enregistrés.À ces fins, deux voies principales sont explorées : la première, qui peut être considérée comme un ajustement de haut niveau, est un changement de paradigmes BCI. Elle porte sur la création de nouveaux paradigmes qui peuvent augmenter les performances de la BCI, alléger l'inconfort de l'utilisation de ces systèmes, et s’adapter aux besoins des utilisateurs. La deuxième voie, considérée comme une solution de bas niveau, porte sur l’amélioration des techniques de traitement du signal et d’apprentissage statistique pour améliorer la qualité du signal EEG, la reconnaissance des formes, ainsi que la tache de classification.D'une part, une nouvelle méthodologie dans le contexte de la robotique d'assistance est définie : il s’agit d’une approche hybride où une interface physique est complémentée par une interface cérébrale pour une interaction homme-machine plus fluide. Ce système hybride utilise les capacités motrices résiduelles des utilisateurs et offre la BCI comme un choix optionnel : l'utilisateur choisit quand utiliser la BCI et peut alterner entre les interfaces cérébrales et musculaire selon le besoin.D'autre part, pour l’amélioration des techniques de traitement du signal et d'apprentissage statistique, ce travail utilise un cadre Riemannien. Un frein majeur dans le domaine de la BCI est la faible résolution spatiale du EEG. Ce problème est dû à l'effet de conductance des os du crâne qui agissent comme un filtre passe-bas non linéaire, en mélangeant les signaux de différentes sources du cerveau et réduisant ainsi le rapport signal-à-bruit. Par conséquent, les méthodes de filtrage spatial ont été développées ou adaptées. La plupart d'entre elles – à savoir la Common Spatial Pattern (CSP), la xDAWN et la Canonical Correlation Analysis (CCA) – sont basées sur des estimations de matrice de covariance. Les matrices de covariance sont essentielles dans la représentation d’information contenue dans le signal EEG et constituent un élément important dans leur classification. Dans la plupart des algorithmes d'apprentissage statistique existants, les matrices de covariance sont traitées comme des éléments de l'espace euclidien. Cependant, étant symétrique et défini positive (SDP), les matrices de covariance sont situées dans un espace courbe qui est identifié comme une variété riemannienne. Utiliser les matrices de covariance comme caractéristique pour la classification des signaux EEG, et les manipuler avec les outils fournis par la géométrie de Riemann, fournit un cadre solide pour la représentation et l'apprentissage du EEG. / In the last two decades, interest in Brain-Computer Interfaces (BCI) has tremendously grown, with a number of research laboratories working on the topic. Since the Brain-Computer Interface Project of Vidal in 1973, where BCI was introduced for rehabilitative and assistive purposes, the use of BCI has been extended to more applications such as neurofeedback and entertainment. The credit of this progress should be granted to an improved understanding of electroencephalography (EEG), an improvement in its measurement techniques, and increased computational power.Despite the opportunities and potential of Brain-Computer Interface, the technology has yet to reach maturity and be used out of laboratories. There are several challenges that need to be addresses before BCI systems can be used to their full potential. This work examines in depth some of these challenges, namely the specificity of BCI systems to users physical abilities, the robustness of EEG representation and machine learning, and the adequacy of training data. The aim is to provide a BCI system that can adapt to individual users in terms of their physical abilities/disabilities, and variability in recorded brain signals.To this end, two main avenues are explored: the first, which can be regarded as a high-level adjustment, is a change in BCI paradigms. It is about creating new paradigms that increase their performance, ease the discomfort of using BCI systems, and adapt to the user’s needs. The second avenue, regarded as a low-level solution, is the refinement of signal processing and machine learning techniques to enhance the EEG signal quality, pattern recognition and classification.On the one hand, a new methodology in the context of assistive robotics is defined: it is a hybrid approach where a physical interface is complemented by a Brain-Computer Interface (BCI) for human machine interaction. This hybrid system makes use of users residual motor abilities and offers BCI as an optional choice: the user can choose when to rely on BCI and could alternate between the muscular- and brain-mediated interface at the appropriate time.On the other hand, for the refinement of signal processing and machine learning techniques, this work uses a Riemannian framework. A major limitation in this filed is the EEG poor spatial resolution. This limitation is due to the volume conductance effect, as the skull bones act as a non-linear low pass filter, mixing the brain source signals and thus reducing the signal-to-noise ratio. Consequently, spatial filtering methods have been developed or adapted. Most of them (i.e. Common Spatial Pattern, xDAWN, and Canonical Correlation Analysis) are based on covariance matrix estimations. The covariance matrices are key in the representation of information contained in the EEG signal and constitute an important feature in their classification. In most of the existing machine learning algorithms, covariance matrices are treated as elements of the Euclidean space. However, being Symmetric and Positive-Definite (SPD), covariance matrices lie on a curved space that is identified as a Riemannian manifold. Using covariance matrices as features for classification of EEG signals and handling them with the tools provided by Riemannian geometry provide a robust framework for EEG representation and learning.

Page generated in 0.1102 seconds