Spelling suggestions: "subject:"apprentissage dde structure"" "subject:"apprentissage dee structure""
1 |
Extraction multimodale de métadonnées de séquences video dans un cadre bayésienBaghdadi, Siwar 10 February 2010 (has links) (PDF)
Le domaine de la description de contenus multimédias est un domaine relativement récent qui a pris une grand importance dans la monde industriel et celui de la recherche, vu l'augmentation considérable de la production de contenus. Un besoin grandissant de systèmes capables de fournir une description sémantique est plus que jamais à l'ordre du jour. Dans ce domaine, les réseaux bayésiens ont été largement utilisés pour modéliser les données vidéos, afin d'en extraire des métadonnées sémantiques. Toutefois, les systèmes basés sur les réseaux bayésiens nécessitent qu'on fixe préalablement leur structure. Cette opération se fait, généralement, soit en utilisant des connaissances a priori, ce qui résulte en un système peu généralisable, soit en utilisant l'hypothèse d'indépendance des flux de données, ce qui résulte en un système peu optimal. Motivés par la nécessité de fournir des systèmes génériques capables de s'adapter à la grande diversité des applications envisageables, nous utilisons l'apprentissage de structure pour construire automatique le réseau bayésien. En apprenant la structure automatiquement à partir d'une base de données, nous n'avons plus besoin de connaissances externes ou de faire des suppositions, souvent peu réalistes, pour la mise en place de la structure du réseau bayésien utilisé. Différentes techniques d'apprentissage de structure ont été utilisés. Nous concluons à la nécessité d'adapter l'apprentissage de structure dans les réseau bayésiens statiques et dynamiques à la classification. En associant Apprentissage de structure et sélection d'attributs, nous obtenons un cadre permettant de construire automatiquement des systèmes de descriptions de contenus sans être dépendants de connaissances externes.
|
2 |
Apprentissage statistique relationnel : apprentissage de structures de réseaux de Markov logiquesDinh, Quang-Thang 28 November 2011 (has links) (PDF)
Un réseau logique de Markov est formé de clauses en logique du premier ordre auxquelles sont associés des poids. Cette thèse propose plusieurs méthodes pour l'apprentissage de la structure de réseaux logiques de Markov (MLN) à partir de données relationnelles. Ces méthodes sont de deux types, un premier groupe reposant sur les techniques de propositionnalisation et un second groupe reposant sur la notion de Graphe des Prédicats. L'idée sous-jacente aux méthodes à base de propositionnalisation consiste à construire un jeu de clauses candidates à partir de jeux de littéraux dépendants. Pour trouver de tels jeux, nous utilisons une méthode de propositionnalisation afin de reporter les informations relationnelles dans des tableaux booléens, qui serviront comme tables de contingence pour des test de dépendance. Nous avons proposé deux méthodes de propositionnalisation, pour lesquelles trois algorithmes ont été développés, qui couvrent les problèmes d'appprentissage génératif et discriminant. Nous avons ensuite défini le concept de Graphe des Prédicats qui synthétise les relations binaires entre les prédicats d'un domaine. Des clauses candidates peuvent être rapidement et facilement produites en suivant des chemins dans le graphe puis en les variabilisant. Nous avons développé deux algorithmes reposant sur les Graphes des Prédicats, qui couvrent les problèmes d'appprentissage génératif et discriminant.
|
3 |
Apprentissage statistique relationnel : apprentissage de structures de réseaux de Markov logiques / Statistical relational learning : Structure learning for Markov logic networksDinh, Quang-Thang 28 November 2011 (has links)
Un réseau logique de Markov est formé de clauses en logique du premier ordre auxquelles sont associés des poids. Cette thèse propose plusieurs méthodes pour l’apprentissage de la structure de réseaux logiques de Markov (MLN) à partir de données relationnelles. Ces méthodes sont de deux types, un premier groupe reposant sur les techniques de propositionnalisation et un second groupe reposant sur la notion de Graphe des Prédicats. L’idée sous-jacente aux méthodes à base de propositionnalisation consiste à construire un jeu de clauses candidates à partir de jeux de littéraux dépendants. Pour trouver de tels jeux, nous utilisons une méthode de propositionnalisation afin de reporter les informations relationnelles dans des tableaux booléens, qui serviront comme tables de contingence pour des test de dépendance. Nous avons proposé deux méthodes de propositionnalisation, pour lesquelles trois algorithmes ont été développés, qui couvrent les problèmes d’appprentissage génératif et discriminant. Nous avons ensuite défini le concept de Graphe des Prédicats qui synthétise les relations binaires entre les prédicats d’un domaine. Des clauses candidates peuvent être rapidement et facilement produites en suivant des chemins dans le graphe puis en les variabilisant. Nous avons développé deux algorithmes reposant sur les Graphes des Prédicats, qui couvrent les problèmes d’appprentissage génératif et discriminant. / A Markov Logic Network is composed of a set of weighted first-order logic formulas. In this dissertation we propose several methods to learn a MLN structure from a relational dataset. These methods are of two kinds: methods based on propositionalization and methods based on Graph of Predicates. The methods based on propositionalization are based on the idea of building a set of candidate clauses from sets of dependent variable literals. In order to find such sets of dependent variable literals, we use a propositionalization technique to transform relational information in the dataset into boolean tables, that are then provided as contingency tables for tests of dependence. Two propositionalization methods are proposed, from which three learners have been developed, that handle both generative and discriminative learning. We then introduce the concept of Graph of Predicates, which synthethises the binary relations between the predicates of a domain. Candidate clauses can be quickly and easily generated by simply finding paths in the graph and then variabilizing them. Based on this Graph, two learners have been developed, that handle both generative and discriminative learning.
|
4 |
Apprentissage de Structure de Modèles Graphiques Probabilistes : application à la Classification Multi-Label / Probabilistic Graphical Model Structure Learning : Application to Multi-Label ClassificationGasse, Maxime 13 January 2017 (has links)
Dans cette thèse, nous nous intéressons au problème spécifique de l'apprentissage de structure de modèles graphiques probabilistes, c'est-à-dire trouver la structure la plus efficace pour représenter une distribution, à partir seulement d'un ensemble d'échantillons D ∼ p(v). Dans une première partie, nous passons en revue les principaux modèles graphiques probabilistes de la littérature, des plus classiques (modèles dirigés, non-dirigés) aux plus avancés (modèles mixtes, cycliques etc.). Puis nous étudions particulièrement le problème d'apprentissage de structure de modèles dirigés (réseaux Bayésiens), et proposons une nouvelle méthode hybride pour l'apprentissage de structure, H2PC (Hybrid Hybrid Parents and Children), mêlant une approche à base de contraintes (tests statistiques d'indépendance) et une approche à base de score (probabilité postérieure de la structure). Dans un second temps, nous étudions le problème de la classification multi-label, visant à prédire un ensemble de catégories (vecteur binaire y P (0, 1)m) pour un objet (vecteur x P Rd). Dans ce contexte, l'utilisation de modèles graphiques probabilistes pour représenter la distribution conditionnelle des catégories prend tout son sens, particulièrement dans le but minimiser une fonction coût complexe. Nous passons en revue les principales approches utilisant un modèle graphique probabiliste pour la classification multi-label (Probabilistic Classifier Chain, Conditional Dependency Network, Bayesian Network Classifier, Conditional Random Field, Sum-Product Network), puis nous proposons une approche générique visant à identifier une factorisation de p(y|x) en distributions marginales disjointes, en s'inspirant des méthodes d'apprentissage de structure à base de contraintes. Nous démontrons plusieurs résultats théoriques, notamment l'unicité d'une décomposition minimale, ainsi que trois procédures quadratiques sous diverses hypothèses à propos de la distribution jointe p(x, y). Enfin, nous mettons en pratique ces résultats afin d'améliorer la classification multi-label avec les fonctions coût F-loss et zero-one loss / In this thesis, we address the specific problem of probabilistic graphical model structure learning, that is, finding the most efficient structure to represent a probability distribution, given only a sample set D ∼ p(v). In the first part, we review the main families of probabilistic graphical models from the literature, from the most common (directed, undirected) to the most advanced ones (chained, mixed etc.). Then we study particularly the problem of learning the structure of directed graphs (Bayesian networks), and we propose a new hybrid structure learning method, H2PC (Hybrid Hybrid Parents and Children), which combines a constraint-based approach (statistical independence tests) with a score-based approach (posterior probability of the structure). In the second part, we address the multi-label classification problem, which aims at assigning a set of categories (binary vector y P (0, 1)m) to a given object (vector x P Rd). In this context, probabilistic graphical models provide convenient means of encoding p(y|x), particularly for the purpose of minimizing general loss functions. We review the main approaches based on PGMs for multi-label classification (Probabilistic Classifier Chain, Conditional Dependency Network, Bayesian Network Classifier, Conditional Random Field, Sum-Product Network), and propose a generic approach inspired from constraint-based structure learning methods to identify the unique partition of the label set into irreducible label factors (ILFs), that is, the irreducible factorization of p(y|x) into disjoint marginal distributions. We establish several theoretical results to characterize the ILFs based on the compositional graphoid axioms, and obtain three generic procedures under various assumptions about the conditional independence properties of the joint distribution p(x, y). Our conclusions are supported by carefully designed multi-label classification experiments, under the F-loss and the zero-one loss functions
|
5 |
Réseaux Bayésiens pour fusion de données statiques et temporelles / Bayesian networks for static and temporal data fusionRahier, Thibaud 11 December 2018 (has links)
La prédiction et l'inférence sur des données temporelles sont très souvent effectuées en utilisant uniquement les séries temporelles. Nous sommes convaincus que ces tâches pourraient tirer parti de l'utilisation des métadonnées contextuelles associées aux séries temporelles, telles que l'emplacement, le type, etc. Réciproquement, les tâches de prédiction et d'inférence sur les métadonnées pourraient bénéficier des informations contenues dans les séries temporelles. Cependant, il n'existe pas de méthode standard pour modéliser conjointement les données de séries temporelles et les métadonnées descriptives. De plus, les métadonnées contiennent fréquemment des informations hautement corrélées ou redondantes et peuvent contenir des erreurs et des valeurs manquantes.Nous examinons d’abord le problème de l’apprentissage de la structure graphique probabiliste inhérente aux métadonnées en tant que réseau Bayésien. Ceci présente deux avantages principaux: (i) une fois structurées en tant que modèle graphique, les métadonnées sont plus faciles à utiliser pour améliorer les tâches sur les données temporelles et (ii) le modèle appris permet des tâches d'inférence sur les métadonnées uniquement, telles que l'imputation de données manquantes. Cependant, l'apprentissage de la structure de réseau Bayésien est un défi mathématique conséquent, impliquant un problème d'optimisation NP-difficile. Pour faire face à ce problème, nous présentons un algorithme d'apprentissage de structure sur mesure, inspiré de nouveaux résultats théoriques, qui exploite les dépendances (quasi)-déterministes généralement présentes dans les métadonnées descriptives. Cet algorithme est testé sur de nombreux jeux de données de référence et sur certains jeux de métadonnées industriels contenant des relations déterministes. Dans les deux cas, il s'est avéré nettement plus rapide que l'état de la l'art, et a même trouvé des structures plus performantes sur des données industrielles. De plus, les réseaux Bayésiens appris sont toujours plus parcimonieux et donc plus lisibles.Nous nous intéressons ensuite à la conception d'un modèle qui inclut à la fois des (méta)données statiques et des données temporelles. En nous inspirant des modèles graphiques probabilistes pour les données temporelles (réseaux Bayésiens dynamiques) et de notre approche pour la modélisation des métadonnées, nous présentons une méthodologie générale pour modéliser conjointement les métadonnées et les données temporelles sous forme de réseaux Bayésiens hybrides statiques-dynamiques. Nous proposons deux algorithmes principaux associés à cette représentation: (i) un algorithme d'apprentissage qui, bien qu'optimisé pour les données industrielles, reste généralisable à toute tâche de fusion de données statiques et dynamiques, et (ii) un algorithme d'inférence permettant les d'effectuer à la fois des requêtes sur des données temporelles ou statiques uniquement, et des requêtes utilisant ces deux types de données.%Nous fournissons ensuite des résultats sur diverses applications inter-domaines telles que les prévisions, le réapprovisionnement en métadonnées à partir de séries chronologiques et l’analyse de dépendance d’alarmes en utilisant les données de certains cas d’utilisation difficiles de Schneider Electric.Enfin, nous approfondissons certaines des notions introduites au cours de la thèse, et notamment la façon de mesurer la performance en généralisation d’un réseau Bayésien par un score inspiré de la procédure de validation croisée provenant de l’apprentissage automatique supervisé. Nous proposons également des extensions diverses aux algorithmes et aux résultats théoriques présentés dans les chapitres précédents, et formulons quelques perspectives de recherche. / Prediction and inference on temporal data is very frequently performed using timeseries data alone. We believe that these tasks could benefit from leveraging the contextual metadata associated to timeseries - such as location, type, etc. Conversely, tasks involving prediction and inference on metadata could benefit from information held within timeseries. However, there exists no standard way of jointly modeling both timeseries data and descriptive metadata. Moreover, metadata frequently contains highly correlated or redundant information, and may contain errors and missing values.We first consider the problem of learning the inherent probabilistic graphical structure of metadata as a Bayesian Network. This has two main benefits: (i) once structured as a graphical model, metadata is easier to use in order to improve tasks on temporal data and (ii) the learned model enables inference tasks on metadata alone, such as missing data imputation. However, Bayesian network structure learning is a tremendous mathematical challenge, that involves a NP-Hard optimization problem. We present a tailor-made structure learning algorithm, inspired from novel theoretical results, that exploits (quasi)-determinist dependencies that are typically present in descriptive metadata. This algorithm is tested on numerous benchmark datasets and some industrial metadatasets containing deterministic relationships. In both cases it proved to be significantly faster than state of the art, and even found more performant structures on industrial data. Moreover, learned Bayesian networks are consistently sparser and therefore more readable.We then focus on designing a model that includes both static (meta)data and dynamic data. Taking inspiration from state of the art probabilistic graphical models for temporal data (Dynamic Bayesian Networks) and from our previously described approach for metadata modeling, we present a general methodology to jointly model metadata and temporal data as a hybrid static-dynamic Bayesian network. We propose two main algorithms associated to this representation: (i) a learning algorithm, which while being optimized for industrial data, is still generalizable to any task of static and dynamic data fusion, and (ii) an inference algorithm, enabling both usual tasks on temporal or static data alone, and tasks using the two types of data.%We then provide results on diverse cross-field applications such as forecasting, metadata replenishment from timeseries and alarms dependency analysis using data from some of Schneider Electric’s challenging use-cases.Finally, we discuss some of the notions introduced during the thesis, including ways to measure the generalization performance of a Bayesian network by a score inspired from the cross-validation procedure from supervised machine learning. We also propose various extensions to the algorithms and theoretical results presented in the previous chapters, and formulate some research perspectives.
|
6 |
New structure learning algorithms and evaluation methods for large dynamic Bayesian networksTrabelsi, Ghada 13 December 2013 (has links) (PDF)
Les réseaux bayésiens dynamiques (RBD) sont une classe de modèles graphiques probabilistes qui est devenu un outil standard pour la modélisation de divers phénomènes stochastiques variant dans le temps. A cause de la complexité induite par l'ajout de la dimension temporelle, l'apprentissage de la structure DBN est une tâche très complexe. Les algorithmes existants sont des adaptations des algorithmes d'apprentissage de structure pour les RB basés sur score mais sont souvent limités lorsque le nombre de variables est élevé. Une autre limitation pour les études d'apprentissage de la structure des RBD, ils utilisent leurs propres Benchmarks et techniques pour l' évaluation. Le probl ème dans le cas dynamique, nous ne trouvons pas de travaux antérieurs qui fournissent des détails sur les réseaux et les indicateurs de comparaison utilisés. Nous nous concentrons dans ce projet à l'apprentissage de la structure des RBD et ses méthodes d'évaluation avec respectivement une autre famille des algorithmes d'apprentissage de la structure, les méthodes de recherche locale, et une nouvelle approche de génération des grandes standard RBD et une métrique d'évaluation. Nous illustrons l'intérêt de ces méthodes avec des résultats expérimentaux.
|
7 |
Toward causal representation and structure learningMansouri Tehrani, Sayed Mohammadamin 08 1900 (has links)
Dans les annales de l'Intelligence Artificielle (IA), la quête incessante pour émuler la cognition humaine dans les machines a sous-tendu l'évolution technologique, repoussant les limites du potentiel humain et des capacités de résolution de problèmes. L'intégration de l'IA a catalysé des progrès remarquables, pénétrant divers domaines et redéfinissant des industries.
Cependant, un défi demeure imperturbable : l'obstacle de la généralisation hors de la distribution (OOD). Alors que l'IA triomphe avec des données familières, elle échoue avec des données en dehors de son domaine d'entraînement. En santé, en finance et au-delà, les limitations de l'IA entravent l'adaptation à des scénarios nouveaux. Cette lacune découle de l'écart entre les schémas appris et les caractéristiques causales et invariantes sous-jacentes, entravant l'adaptabilité à des scénarios inexplorés.
Cette thèse franchit des étapes significatives pour aborder cette question en innovant et en exploitant des méthodes issues de l'apprentissage de structure causale et de représentation. Le parcours commence par un algorithme novateur d'apprentissage de structure, les ``Reusable Factor Graphs'', qui tire parti des biais inductifs issus de la causalité et de la cognition humaine pour une meilleure généralisation. Ensuite, en explorant l'apprentissage de représentation causale, nous découvrons des représentations désenchevêtrées centrées sur les objets en utilisant une supervision faible basée sur une connaissance partielle de la structure causale des données. Ces connaissances se conjuguent pour préconiser l'apprentissage conjoint de la structure causale et de la représentation. L'architecture proposée, les ``Reusable Slotwise Mechanisms'' (RSM), relie théorie et pratique, démontrant une promesse réelle à travers ses représentations centrées sur les objets et ses mécanismes causaux réutilisables. Cette fusion offre une solution potentielle pour surmonter les limitations de la généralisation OOD en IA. / In the annals of Artificial Intelligence (AI), an enduring quest to emulate human cognition in machines has underpinned technological evolution, driving the boundaries of human potential and problem-solving capabilities. The integration of AI has catalyzed remarkable progress, infiltrating various domains and redefining industries.
Yet, a challenge remains unshaken: the hurdle of out-of-distribution (OOD) generalization. While AI triumphs with familiar data, it falters with data outside its training realm. In healthcare, finance, and beyond, AI's limitations hinder adaptation to novel scenarios. This deficiency arises from the gap between learned patterns and underlying causal and invariant features, hindering adaptability to uncharted scenarios.
This thesis takes significant steps toward tackling this issue by innovating and leveraging methods from causal structure and representation learning. The journey begins with an innovative structure learning algorithm, Reusable Factor Graphs, leveraging inductive biases from causality and human cognition for improved generalization. Next, delving into causal representation learning, we uncover object-centric disentangled representations using weak supervision from partial knowledge of the causal structure of data. These insights synergize in advocating joint learning of causal structure and representation. The proposed Reusable Slotwise Mechanisms (RSM) architecture bridges theory and practice, demonstrating real-world promise through its object-centric representations and reusable causal mechanisms. This fusion offers a potential solution for tackling OOD generalization limitations in AI.
|
Page generated in 0.123 seconds