• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Toward causal representation and structure learning

Mansouri Tehrani, Sayed Mohammadamin 08 1900 (has links)
Dans les annales de l'Intelligence Artificielle (IA), la quête incessante pour émuler la cognition humaine dans les machines a sous-tendu l'évolution technologique, repoussant les limites du potentiel humain et des capacités de résolution de problèmes. L'intégration de l'IA a catalysé des progrès remarquables, pénétrant divers domaines et redéfinissant des industries. Cependant, un défi demeure imperturbable : l'obstacle de la généralisation hors de la distribution (OOD). Alors que l'IA triomphe avec des données familières, elle échoue avec des données en dehors de son domaine d'entraînement. En santé, en finance et au-delà, les limitations de l'IA entravent l'adaptation à des scénarios nouveaux. Cette lacune découle de l'écart entre les schémas appris et les caractéristiques causales et invariantes sous-jacentes, entravant l'adaptabilité à des scénarios inexplorés. Cette thèse franchit des étapes significatives pour aborder cette question en innovant et en exploitant des méthodes issues de l'apprentissage de structure causale et de représentation. Le parcours commence par un algorithme novateur d'apprentissage de structure, les ``Reusable Factor Graphs'', qui tire parti des biais inductifs issus de la causalité et de la cognition humaine pour une meilleure généralisation. Ensuite, en explorant l'apprentissage de représentation causale, nous découvrons des représentations désenchevêtrées centrées sur les objets en utilisant une supervision faible basée sur une connaissance partielle de la structure causale des données. Ces connaissances se conjuguent pour préconiser l'apprentissage conjoint de la structure causale et de la représentation. L'architecture proposée, les ``Reusable Slotwise Mechanisms'' (RSM), relie théorie et pratique, démontrant une promesse réelle à travers ses représentations centrées sur les objets et ses mécanismes causaux réutilisables. Cette fusion offre une solution potentielle pour surmonter les limitations de la généralisation OOD en IA. / In the annals of Artificial Intelligence (AI), an enduring quest to emulate human cognition in machines has underpinned technological evolution, driving the boundaries of human potential and problem-solving capabilities. The integration of AI has catalyzed remarkable progress, infiltrating various domains and redefining industries. Yet, a challenge remains unshaken: the hurdle of out-of-distribution (OOD) generalization. While AI triumphs with familiar data, it falters with data outside its training realm. In healthcare, finance, and beyond, AI's limitations hinder adaptation to novel scenarios. This deficiency arises from the gap between learned patterns and underlying causal and invariant features, hindering adaptability to uncharted scenarios. This thesis takes significant steps toward tackling this issue by innovating and leveraging methods from causal structure and representation learning. The journey begins with an innovative structure learning algorithm, Reusable Factor Graphs, leveraging inductive biases from causality and human cognition for improved generalization. Next, delving into causal representation learning, we uncover object-centric disentangled representations using weak supervision from partial knowledge of the causal structure of data. These insights synergize in advocating joint learning of causal structure and representation. The proposed Reusable Slotwise Mechanisms (RSM) architecture bridges theory and practice, demonstrating real-world promise through its object-centric representations and reusable causal mechanisms. This fusion offers a potential solution for tackling OOD generalization limitations in AI.
2

Generative models : from data generation to representation learning

Zhang, Ruixiang 08 1900 (has links)
La modélisation générative est un domaine en pleine expansion dans l'apprentissage automatique, avec des modèles démontrant des capacités impressionnantes pour la synthèse de données en haute dimension à travers diverses modalités, y compris les images, le texte et l'audio. Cependant, des défis significatifs subsistent pour améliorer la qualité des échantillons et la contrôlabilité des modèles, ainsi que pour développer des méthodes plus principiées et efficaces pour apprendre des représentations de caractéristiques structurées avec des modèles génératifs. Cette thèse conduit une enquête complète en deux parties sur les frontières de la modélisation générative, en mettant l'accent sur l'amélioration de la qualité des échantillons et la manœuvrabilité, ainsi que sur l'apprentissage de représentations latentes de haute qualité. La première partie de la thèse propose de nouvelles techniques pour améliorer la qualité des échantillons et permettre un contrôle fin des modèles génératifs. Premièrement, une nouvelle perspective est introduite pour reformuler les réseaux antagonistes génératifs pré-entraînés comme des modèles basés sur l'énergie, permettant un échantillonnage plus efficace en exploitant à la fois le générateur et le discriminateur. Deuxièmement, un cadre théorique basé sur l'information est développé pour incorporer des biais inductifs explicites dans les modèles à variables latentes grâce aux réseaux bayésiens et à la théorie du goulot d'étranglement multivarié. Cela fournit une vision unifiée pour l'apprentissage de représentations structurées adaptées à différentes applications comme la modélisation multi-modale et l'équité algorithmique. La deuxième partie de la thèse se concentre sur l'apprentissage et l'extraction de caractéristiques de haute qualité des modèles génératifs de manière entièrement non supervisée. Premièrement, une approche basée sur l'énergie est présentée pour l'apprentissage non supervisé de représentations de scènes centrées sur l'objet avec une invariance de permutation. La compositionnalité de la fonction d'énergie permet également une manipulation contrôlable de la scène. Deuxièmement, des noyaux de Fisher neuronaux sont proposés pour extraire des représentations compactes et utiles des modèles génératifs pré-entraînés. Il est démontré que les approximations de rang faible du noyau de Fisher fournissent une technique d'extraction de représentation unifiée compétitive par rapport aux références courantes. Ensemble, ces contributions font progresser la modélisation générative et l'apprentissage de représentations sur des fronts complémentaires. Elles améliorent la qualité des échantillons et la manœuvrabilité grâce à de nouveaux objectifs d'entraînement et des techniques d'inférence. Elles permettent également d'extraire des caractéristiques latentes structurées des modèles génératifs en utilisant des perspectives théoriques basées sur l'information et le noyau neuronal. La thèse offre une enquête complète sur les défis interconnectés de la synthèse de données et de l'apprentissage de représentation pour les modèles génératifs modernes. / Generative modeling is a rapidly advancing field in machine learning, with models demonstrating impressive capabilities for high-dimensional data synthesis across modalities including images, text, and audio. However, significant challenges remain in enhancing sample quality and model controllability, as well as developing more principled and effective methods for learning structured feature representations with generative models. This dissertation conducts a comprehensive two-part investigation into pushing the frontiers of generative modeling, with a focus on improving sample quality and steerability, as well as enabling learning high-quality latent representations. The first part of the dissertation proposes novel techniques to boost sample quality and enable fine-grained control for generative models. First, a new perspective is introduced to reformulate pretrained generative adversarial networks as energy-based models, enabling more effective sampling leveraging both the generator and discriminator. Second, an information-theoretic framework is developed to incorporate explicit inductive biases into latent variable models through Bayesian networks and multivariate information bottleneck theory. This provides a unified view for learning structured representations catered to different applications like multi-modal modeling and algorithmic fairness. The second part of the dissertation focuses on learning and extracting high-quality features from generative models in a fully unsupervised manner. First, an energy-based approach is presented for unsupervised learning of object-centric scene representations with permutation invariance. Compositionality of the energy function also enables controllable scene manipulation. Second, neural fisher kernels are proposed to extract compact and useful representations from pretrained generative models. It is shown that low-rank approximations of the Fisher Kernel provide a unified representation extraction technique competitive with common baselines. Together, the contributions advance generative modeling and representation learning along complementary fronts. They improve sample quality and steerability through new training objectives and inference techniques. They also enable extracting structured latent features from generative models using information-theoretic and neural kernel perspectives. The thesis provides a comprehensive investigation into the interconnected challenges of data synthesis and representation learning for modern generative models.

Page generated in 0.0976 seconds