• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 71
  • 1
  • Tagged with
  • 259
  • 259
  • 134
  • 76
  • 71
  • 66
  • 48
  • 42
  • 34
  • 32
  • 30
  • 28
  • 28
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Kokanee Fry Recruitment and Early Life History in the Lake Tahoe Basin

Gemperle, Christine K. 01 May 1998 (has links)
Lake Tahoe kokanee salmon have experienced decreasing mean adult size and fluctuating populations since 1970. We proposed to determine whether fish production was limited by spawning and incubation processes in Taylor Creek , or by growth constraints , or by mortality in the lake by studying egg-to-fry survival rates and early life history . Estimated egg-to-fry survival was 15. 9% for the 1994 brood year and 1.5% for the 1995 brood year. Egg-to-adult survival was 3.5% for the 1991 brood year and 5.9% for the 1992 brood year. Of the 35 possible survival scenarios, egg-to-fry survival was 7.5-20% and fry-to-adult survival (inlake phase) was 20-60%. The differing egg-to-fry survival rates corresponded to different stream temperature regimes during critical incubation periods. During and after the outmigration, fry inhabited the littoral zone, pelagic zone, and an estuarine environment created by a flooded meadow. Chironomids were the dominant prey in both 1995 and 1996 for fry in the littoral regions. Fry declined in the littoral zone approximately 30 days after peak outmigration during both 1995 and 1996. Juveniles and adults in the lake inhabited the upper 10 m of the water column and consumed primarily copepods for most of their limnetic life. Otolith analysis revealed that five year classes were present with the fifth year class representing 15.0% (1995) to 7.6% (1996) of the spawning population. Despite Lake Tahoe's low productivity, kokanee achieved greater size at age-4 than many other populations. Low densities (14.5 fish/hectare) and warmer winter temperatures may enable kokanee to reach greater size. Kokanee production may be limited by warm stream temperatures during spawning and early incubation in some years. Egg-to-fry survival is the most limiting factor. Enhancement of the kokanee population should focus on this phase of life history. Kokanee are not native to the Lake Tahoe Basin, which is considerably south of their historic range. Kokanee may be limited by inadequate adaptation to California's mild climate.
142

Bait Shyness and Neophobia in Several Species of Osteichthyes: An Extension of Taste Aversion Studies to the Superclass Pices

Roberts, Brent W. 01 May 1978 (has links)
Three experiments were conducted with five species of tropical fish to investigate the phenomena of taste aversion and food neophobia. In addition, an experiment determined specifically if position in the tank could acquire conditioned aversive properties. In Experiment 1 , four habituated fish were fed novel meat-flavored pellets on the treatment day. Six were made ill within 30, 60, or 90 minutes (2 subjects each) by intragastric administration of syrup or Epicac. The following day all were fed familiar commercial pellets. On the second day after treatment, all were offered the meat-flavored pellets. Results showed longer latencies, more tasting, and decreased consumption of novel pellets. All measures differed significantly for the treatment subjects compared to their own baseline and controls. Experiment II demonstrated food neophobia in four in experienced fish. After habituation they were fed novel meat-flavored pellets but not made ill (day 0). On day 1 and 2 they received familiar diet and were made ill after the feeding on day 2. On day 3 they received familiar food again and no change in approach latency, testing response, or quantity consumed occurred. On day 4, they were offered the novel meat-flavored pellets which they refused. These results indicate that the fish associated the illness with the more "novel" food even though their familiar diet was temporally closer to the illness. In Experiment III five species of naive fish were habituated to 20-gallon tanks and made ill after eating in one end and not in the other. The same food was us ed in both ends. The "illness end" could have taken on discriminitive properties and food consumption there should have decreased, as opposed to the other "safe end". The results indicated that "place" did not acquire aversive discriminitive properties. Food consumption decreased in quantity, food approach latencies increased and length of tasting bouts increased in both ends. These experiments were the first to use these species of fish in this type of research. The results extend the phenomena of taste aversion and food neophobia. In addition, Experiment III systematically replicated the hypothesis of relevant relations between stimuli and showed that it is easier to learn certain consequences with certain cues than with others. In this case illness was quickly associated with taste but "place" was treated as irrelevant.
143

Habitat Selection and Movement of a Stream-Resident Salmonid in a Regulated River and Tests of Four Bioenergetic Optimization Models

Bowen, Mark D. 01 May 1996 (has links)
A bioenergetics model was constructed for stream-resident drift-feeding salmonids. Model predictions of surplus power (energy available per unit time for lll growth and reproduction) were not statistically distinguishable from observations of surplus power in three laboratory studies. Of 40 experimental trials in these three studies, the model correctly predicted surplus power in 39 cases (p < 0.05). I collected observations of rainbow trout (Oncorhynchus mykiss) focal velocity and physical habitat availability in the Green River of northeastern Utah, USA (1988-1990). In the winter of 1988, Flaming Gorge Dam generated hydropower and delivered an lJDStable discharge regime with a higher mean discharge to the Green River. During 1989 and 1990, Flaming Gorge Dam's operation was curtailed by drought. Therefore, the Green River exhibited a more stable discharge regime with lower mean daily discharge. During winters exhibiting the stable discharge regime, all size classes of rainbow trout selected slower focal velocities than under an unstable winter discharge regime. Season had less influence on microhabitat selection of large fish than smaller individuals. Rainbow trout larger than 33 cm (total length) find and use positions with low focal velocities and high velocity shear regardless of season. In contrast, during the summer, fish less than 33 cm TL find and use positions with much higher focal velocities and greater velocity shear compared to the winter. Four bioenergetic models were tested with the focal velocity use data. Two optimal goal models produced excellent fits (r2 = 0.91 and 0.93) to observed focal velocity use of rainbow trout larger than 33 cm TL. These results were consistent with the hypothesis that large rainbow trout were finding optimal focal velocity positions in stable discharge summers and under both discharge regimes in winter. Rainbow trout movement was quantified along two scales with radio-telemetered fish: 1) weekly observations generated estimates of distances moved at intervals greater than one day and 2) multiple observations of a fish in one day produced estimates of distances moved over hours. I found an unstable discharge regime significantly reduces movement measured weekly (F = 11.10, P = 0.0019); hourly movement rates (m/h) were also reduced (F = 5.90, P = 0.0273).
144

Variability in the Spatial and Temporal Patterns of Larval Scombrid Abundance in the Gulf of Mexico

Habtes, Sennai Y. 20 November 2014 (has links)
Accurate fishery-independent methods for assessing the abundance of marine fish stocks are important tools for proper pelagic fisheries management. The review and improvement of standardized sampling methods used in fisheries-independent sampling, and the establishment of improved models of abundance and population dynamics utilizing novel statistical techniques for fisheries management will further improve our understanding of the way in which marine fish stocks vary spatially and temporally. One of the most important and longest running surveys of fisheries-independent data in the Southeastern United States is the spring ichthyoplankton survey conducted through the Southeast Area Mapping and Assessment Program (SEAMAP). These surveys of highly migratory pelagic fish larvae and eggs in the exclusive economic zone of the USA in the Gulf of Mexico have been conducted annually during spring spawning periods (March to June) since 1982 by the National Oceanic and Atmospheric Administration (NOAA) National Marine Fisheries Service (NMFS). A primary focus of this survey is collecting the data used in a larval abundance index of bluefin tuna (Thunnus thynnus) for "tuning" population estimates for the western Atlantic stock of this species using virtual population analysis (VPA). As with many other forms of fishery independent data, there is statistical overdispersion of larval fish and high variability in catch rates related to non-static environmental conditions. This variability in catch rates, along with zero-inflated estimates of abundance, i.e. characterized by high numbers of stations with low or zero catches, present problems in deriving accurate and reliable stock assessments for western Atlantic bluefin tuna. The research presented here was conducted in an effort to improve the decision support system used in managing bluefin tuna in the western Atlantic, by improving catch rates of their larvae during spring ichthyoplankton cruises. A major focus of which was to overcome challenges related to reducing the variance of the larval index of abundance. The research presented here, explored the influence of sampling design and oceanographic conditions on an assemblage of commercially important taxa within the Gulf of Mexico. Such studies are necessary to evaluate differences in habitat utilization within a specific complex or among assemblages of closely related taxa. The spatial and temporal patterns of larval bluefin tuna (Thunnus thynnus) were analyzed in relation to mesoscale patterns of circulation, types of sampling gear used during fishery independent surveys, and in the context of common oceanographic variables associated with the spawning habitat of this iconic pelagic predator. Collaterally the relationship between the above factors on spatial and temporal patterns of the larvae of seven congeneric species of marine fish, whose larvae commonly occur with bluefin tuna, during the spring spawning season in the Gulf of Mexico (Auxis spp., Euthynnus alleteratus Corphaena spp., Katsuwonus pelamis, other Thunnus spp.: Thunnus albacares and Thunnus atlanticus, Istiophoridae, and Xiphias gladius) was investigated. The historical distribution of abundance in these eight taxa of larval epipelagic fish were analyzed in the context of mesoscale and large scale circulation features in the Gulf of Mexico between 1994 and 2008. Characterization of these features was conducted using concurrent, synoptic satellite altimeter, sea surface temperature (SST), and ocean color (OC) observations. Larval abundance among mesocale features was examined for the eight pelagic fish taxa using permutational multivariate analysis of variance (PERMANOVA). All but one taxon, T. thynnus, showed differences in occurrence across features. Additionally only two taxa (X. gladius and Istiophoridae) did not show highest abundances in "Common Waters" of the Gulf of Mexico. The abundance of the eight taxa, when examined in aggregate or as an assemblage, differed significantly between circulation features. However, distributions of individual taxa among circulation features differed for only the other Thunnus spp. taxa, which incorporates Thunnus albacares and atlanticus. The results from this study indicated that for most of the individual taxa studied, and Thunnus thynnus in particular the distribution of spawning habitat in the Gulf of Mexico is not associated with specific patterns in circulation. To analyze the impact of sampling gear on larval epipelagic abundance, the collection methods of the eight taxa during spring surveys, including a new net sampling methodology tested in surveys between 2009 and 2011, were compared. This new sampling methodology consisted of a 1x2 m frame fitted with a 0.505 mm mesh net, towed in a yo-yo fashion between the surface and 10m depth, referred to as the S-10 net. Sampling effectiveness between gears was compared by examining the abundance and length of the eight taxa of larval fish. A PERMANOVA of net type and time of sampling (day/night) on abundance and mean body length (BL) indicated that net type was a significant factor in assessing abundance and BL for all taxa. Highest mean assemblage and individual taxa abundance for seven of the eight taxa were in S-10 samples. Depth discrete sampling of the upper 50 m indicated that highest abundances for all scombrid taxa were found in the upper 30 m and provided justification for the improved sampling efficiency of the S-10 net. These results indicate that distributions of these epipelagic fish are not truly neustonic and that sampling effectiveness for them strongly depends on depth range fished by the net. Finally, the results of two research cruises using the new sampling methodology (S-10 net) during the spring of 2010 and 2011 were investigated to explore larval fish assemblages. Canonical analysis of principal coordinates (CAP) was used to evaluate the horizontal distribution of eight taxa of epipelagic larval fish and to relate these distributions to a total of eight variables observed through in-situ and remotely obtained data. Larval assemblages were established for the CAP via unweighted pair group method with arithmetic mean (UPGMA) hierarchical clustering utilizing similarity profile analysis (SIMPROF) tests for stopping rules. Further refinement to five common assemblage groups was obtained using indicator species values (INDVALS) and percent composition of taxa abundance within groups. Total model accuracy was 54%, with highest classification success for the assemblage group characterized by T. thynnus and the other Thunnus spp. (64%), and lowest classification success for negative stations (22%). Changes in the assemblage of these larval fish were partially explained by the seasonal progression in day-length, and related changes in sea surface temperature. Depth, chlorophyll a concentration, salinity, and optical clarity were also important. Five assemblages of larval fish were identified, characterized by differences in the relative abundance of the five taxa of scombrids, and the Coryphaena spp. taxa, and indicated a high degree of shared spawning habitat. The differences in habitat utilization by these taxa is highly influenced by seasonal changes in sea surface temperature, and large scale differences in depth and water masses in the Gulf of Mexico. This results in a gradual shift from groups with smaller and more abundant coastally influenced taxa with protracted spawning seasons to the larger sub-tropical, more pelagic species across a large expanse of shared spawning habitat. This dissertation research provides a context to the historical assessment of abundance, evidence for the association of specific taxa with particular oceanographic conditions, and improved assessment capabilities for epipelagic larval fish. As this research shows the spawning habitat of these taxa in the Gulf of Mexico are largely shared, and the influence of environmental variables only partly addressed the spatial and temporal variance attributed to larval abundance in the Gulf of Mexico. The improved methods used in this study will be useful to researchers studying the factors impacting larval recruitment and survival of highly migratory species, and comprehensive ecosystem based resource management. The results will improve fisheries-independent sampling and management for highly migratory species, and provides new methods for evaluating larval fish assemblages within the framework of oceanographic conditions for large marine ecosystems.
145

Use of a Towed Camera System for Estimating Reef Fish Populations Densities on the West Florida Shelf

Grasty, Sarah Elizabeth 04 November 2014 (has links)
Reef fish species tend to reside over high relief habitat which makes them difficult to sample with traditional gears such as nets and trawls. Therefore, implementing and understanding the strengths and weaknesses of new approaches which incorporate acoustic and optical methods has become a priority for reef fish stock assessment. Beginning in June of 2013, a towed camera system known as the Camera-Based Assessment Survey System (C-BASS) has been used to visualize over 500 kilometers of transect and record more than 80 hours of video over several habitats in the Gulf of Mexico. Surveys have been completed on the West Florida Shelf in the Florida Middle Grounds (FMG), Madison-Swanson (MS) and Steamboat Lumps (SL) closed areas. High resolution multibeam bathymetry is available for these areas and was important for the deployment of C-BASS which is towed just above the seafloor (2-3 meters above the bottom). This system can facilitate regular surveys of fishes which inhabit untrawlable bottom types (e.g. reefs, pinnacles, boulders) and within habitats where lethal, extractive techniques are prohibited such as in protected areas. To address potential biases resulting from fish reactions towards C-BASS, observed reactive behavior was analyzed in addition to far-field reactive behavior towards C-BASS using stationary camera pods. Most fish observed on C-BASS imagery exhibited weak negative or neutral behavior at proportions of 49% and 38%, respectively. Of those fish which did negatively react to C-BASS, almost all movement was in the 180° and 0° directions (right and left) relative to the tow body's movement. Preliminary results from the direct observation (far-field) experiments also demonstrated a general lack of reactive behavior as C-BASS was towed nearby with no significant decreases in mean abundance of fishes between the periods before, during and after C-BASS was towed over an area (95% confidence level). Although behavioral reactions are species-specific, results indicate that the system may not greatly deter the species of interest (i.e. snappers, groupers, porgies, lionfish, and amberjacks) in this study. Density estimates and subsequent first-order total abundance estimates were also developed for stratified habitat types in the FMG and MS. Overall abundance estimates were greater in 2014 than in 2013 which likely were a result of increased illumination, improvements to video quality, and lower chlorophyll and turbidity levels in 2014. With minor improvements and further behavior analysis, it is expected C-BASS can provide accurate, precise abundance estimates of target reef fish species for management purposes.
146

Using Otolith Elemental Composition to Track the Habitat Use, Movements, and Life History Patterns of Common Snook (Centropomus undecimalis) and Red Drum (Sciaenops ocellatus) in the Tampa Bay Estuary

Rolls, Holly Jacqueline 10 June 2014 (has links)
Knowledge of fish habitat use and connectivity is critical for understanding the structure and dynamics of fish populations and, therefore, necessary for the implementation of successful fisheries management strategies. Tagging is an effective means of providing such information, and the elemental composition contained within fish otoliths is increasingly being used as a natural tag. The chemical composition of otoliths reflects the incorporation of elements from different water bodies and can thus be used to understand the habitat use, movements, and life history patterns of fishes. To assess the applicability of otolith elemental composition as a tagging technique within the Tampa Bay estuary, Florida, laser ablation-inductively coupled-plasma mass spectrometry (LA-ICP-MS) was used to analyze the elemental composition of otoliths from two estuarine-dependent fish species, Snook (Centropomus undecimalis) and Red Drum (Sciaenops ocellatus). Otolith elemental fingerprints can be used to quantify the proportion of juveniles from different nurseries that survive to join the sub-adult and adult fisheries, thus, providing resource managers with quantitative criteria to prioritize the most productive areas for conservation and restoration. To evaluate the use of otolith elemental fingerprinting in the Tampa Bay estuary, the spatial and temporal scales of chemical variation in otoliths collected from throughout Tampa Bay were examined by performing permutation-based multivariate analyses of variance (MANOVA) on the elemental data at several spatial (individual tributary, two-region, and three-region) and temporal (annual and seasonal) scales. Canonical Analysis of Principal Coordinates (CAP) was used to generate classifiers based on the otolith elemental fingerprints of juvenile fish, and `leave-one-out' cross-validation procedures indicated that the greatest classification accuracy was obtained by using the two-region model (upper vs. lower Tampa Bay) for both species (for Snook F=45.8, p=0.001, CAP cross-validation success=76%; for Red Drum F=9.7, p=0.001, CAP cross-validation success=87%). For both species, all temporal analyses at the inter-annual scale indicated that otolith elemental fingerprints were significantly different across years (two-way MANOVA; p Several environmental factors which may have contributed to the regional differences in otolith chemistry were examined, including physico-chemical parameters (surface measurements of salinity, dissolved oxygen, pH, and temperature taken at the time of sample collection), surficial geologic stratigraphy, and land development. Weak, but significant correlations were identified between some elements and physico-chemical parameters; however, instantaneous measurements taken at the time of fish collection may not have provided an accurate representation of the overall conditions experienced by the fish during the period in which the otolith material used in analyses had been deposited (2 - 4 weeks). A significant correlation between latitude and otolith Sr/Ca was found, likely corresponding to an increasing ambient gradient that occurs from the upper to lower bay (for Red Drum F=77.1, p=0.001; for Snook F=69.2, p=0.001). The Land Development Intensity metric was negatively correlated with otolith Li/Ca and Sr/Ca. While surficial geologic inputs may have also contributed to the elemental composition of otoliths, the relationships revealed by redundancy analyses (RDA) were somewhat unclear or contradictory. Once the appropriate chemical characterization of the study area was identified (the two-region models for both species), elemental fingerprints from the core portions of sub-adult and adult otoliths were assigned to their most probable juvenile habitat region using a maximum likelihood estimator based on the posterior probabilities generated by CAP analyses (CAP-MLE). Application of the two-region model revealed that the majority of Red Drum (83%) was determined to have originated from juvenile habitats in the upper Tampa Bay region, while most Snook (60%) originated from juvenile habitats in the lower Tampa Bay region. The majority of sub-adult/adult Snook and Red Drum were collected from the same region in which they were determined to have originated (for Snook, 36 out of 55 = 65%; for Red Drum, 58 out of 78 = 74%), indicating some level of site fidelity to juvenile habitat areas. The use of otolith elemental profiling to reconstruct specific environmental and physiological experiences has the potential to provide unique insights regarding the life histories of Snook, a species with unpredictable spawning and movement characteristics. Otoliths from Snook maintained in captivity at the Mote Aquaculture Park (MAP) were analyzed to elucidate the degree to which various factors, including otolith growth (macrostructure features), spawning events, handling stress, and salinity influence otolith chemistry. Cross-correlation analyses of otolith elemental profiles and quantified macrostructure features (including annuli and checks) demonstrated that interpretations of elemental patterns should not be confounded by changes associated with otolith crystallography. An elemental marker for known spawning events was not identified (ANOVA spawners vs. non-spawners, p>0.05); however, because the physiological costs and alterations in blood chemistry associated with gonadal maturation (rather than the singular act of spawning) could affect otolith chemistry, additional studies which more thoroughly track maturation stages may be able to identify a suite of elements that can be used to discern the reproductive histories of Snook. Significantly elevated Zn:Ca (ANOVA: F=5.64, p=0.012) and decreased Fe:Ca (ANOVA: F=25.02, p Continuous life history Ba:Ca and Sr:Ca profiles of 56 wild Snook collected from throughout Tampa Bay revealed significant plasticity in the types of juvenile habitats settled, as well as in the timing of ontogenetic movements from these habitats. Of the profiles examined, 55% exhibited otolith core signatures characterized by an opposing Sr:Ca and Ba:Ca pattern, followed by an inverted pattern, providing an indicator of the movement of larvae from high salinity, pre-settlement environments into mesohaline, tidally-influenced juvenile habitats. In contrast, nearly half (45%) the Sr:Ca and Ba:Ca profiles indicated settlement in higher salinity environments, suggesting a high degree of habitat plasticity for juveniles of this species. For fish that settled into mesohaline habitats, decreases in Ba:Ca and/or increases in Sr:Ca over the first several years of life signaled the ontogenetic transition out of the juvenile habitat, with the timing of emergence ranging from within the first year to age-3. Because conditions during early life may propagate into divergent behaviors in subsequent life stages, information on the experiences of early life and juvenile stages could help to inform whether the occupation of different juvenile habitat types, or the precocious or delayed emergence from those habitats, explain the peculiar spawning and movement habits that occur in this species.
147

Ontogenetic Diet Shifts and Prey Preference of a Generalist Predatory Fish

Scharf, Brittany Jalene 20 July 2014 (has links)
Marine ecosystems are highly dynamic and contain a diverse faunal assemblage that are subject to various natural and anthropogenic variability. Globally, seagrass ecosystems are located adjacent to coastal areas that are heavily impacted by human development and urbanization potentially altering the community structure within these ecosystem. Complex food webs connect many components of these systems, often in unexpected ways, and are ultimately based on one of two pathways: benthic (i.e., seagrass, epiphytes, microalgae, detritus) and planktonic (i.e., phytoplankton). Understanding the pathway which the food web is based gives further insight regarding the biological balance of the ecosystem; thus it is important to expand beyond bounds of single-species approaches for research and management. Observing what a predator consumes and its preference for any particular prey can be informative in regards to how a predator interacts and utilizes an ecosystem. Predatory fish are exposed to a wide range of potential prey with varying levels of mobility in their natural environment and may employ a wide range of feeding tactics in order to capture prey. Overall, prey availability and abundances are influenced by many factors (e.g., seasons, tides, habitat loss and gain) and many piscivorous fishes will undergo ontogenetic shift in diet in order to optimize their energetic return limiting the interpretation of electivity studies. Although much information can be obtained through stomach analysis of fish, some prey are more rapidly digested due to the lack of hard, external structures and may be overlooked in the analysis. Furthermore, prey preference cannot be based solely on the observed abundance in the diet of a predator because it takes time for a predator to find, consume, and digest prey (i.e., "handling time"). Therefore, multiple approaches, both observational and experimental, are necessary to fully understand trophodynamics of fishes and their ecosystems. To better understand the trophodynamics of the Spotted Seatrout, Cynoscion nebulosus, my thesis incorporates both an observational and experimental study. My observational study compares three stomach analyses datasets to address changes in the diet composition over a thirty-two year timespan during which natural and anthropogenic changes potentially altered the community structure of Tampa Bay. This is paired with an experimental study to address differently handling times of two morphologically- and behaviorally- different prey that were observed in the diet of juvenile Spotted Seatrout.
148

Comparison of Topographic Surveying Techniques in Streams

Bangen, Sara G. 01 May 2013 (has links)
Fine-scale resolution digital elevation models (DEMs) created from data collected using high precision instruments have become ubiquitous in fluvial geomorphology. They permit a diverse range of spatially explicit analyses including hydraulic modeling, habitat modeling and geomorphic change detection. Yet, the intercomparison of survey technologies across a diverse range of wadeable stream habitats has not yet been examined. Additionally, we lack an understanding regarding the precision of DEMs derived from ground-based surveys conducted by different, and inherently subjective, observers. This thesis addresses current knowledge gaps with the objectives i) to intercompare survey techniques for characterizing instream topography, and ii) to characterize observer variability in instream topographic surveys. To address objective i, we used total station (TS), real-time kinematic (rtk) GPS, terrestrial laser scanner (TLS), and infrared airborne laser scanning (ALS) topographic data from six sites of varying complexity in the Lemhi River Basin, Idaho. The accuracy of derived bare earth DEMs was evaluated relative to higher precision TS point data. Significant DEM discrepancies between pairwise techniques were calculated using propagated DEM errors thresholded at a 95% confidence interval. Mean discrepancies between TS and rtkGPS DEMs were relatively low (≤ 0.05 m), yet TS data collection time was up to 2.4 times longer than rtkGPS. ALS DEMs had lower accuracy than TS or rtkGPS DEMs, but ALS aerial coverage and floodplain topographic representation was superior to all other techniques. The TLS bare earth DEM accuracy and precision were lower than other techniques as a result of vegetation returns misinterpreted as ground returns. To address objective ii, we used a case study where seven field crews surveyed the same six sites to quantify the magnitude and effect of observer variability on DEMs interpolated from the survey data. We modeled two geomorphic change scenarios and calculated net erosion and deposition volumes at a 95% confidence interval. We observed several large magnitude elevation discrepancies across crews, however many of these i) tended to be highly localized, ii) were due to systematic errors, iii) did not significantly affect DEM-derived metric precision, and iv) can be corrected post-hoc.
149

The Effects of Growth Hormone in the Inner Ear of Zebrafish (<i>Danio rerio</i>) during Hair Cell Regeneration

Lin, Chia-Hui 01 August 2010 (has links)
Although deafness is a universal problem, effective treatments have remained elusive. In order to develop potential treatments, an overall understanding of the cellular process of auditory hair cell regeneration, which occurs in fish but not mammals, must be established. A previous microarray analysis and qRT-PCR validation of noise-exposed zebrafish showed that growth hormone (GH) was significantly upregulated during the process of auditory hair cell regeneration. Thus, GH may play an important role during hair cell regeneration. However, cellular effects of exogenous GH in the zebrafish auditory hair cell regeneration have not been examined after noise exposure. To understand the effect of GH in hair cell regeneration, adult zebrafish were exposed to a 150 Hz pure tone at a source level of 179 dB re 1 μPa RMS for 36 hours. Afterward the fish were immediately injected intraperitoneally with carp recombinant GH (20 μg/gram of body mass) or buffer (0.1 M, pH 7.4 phosphate buffer) and then placed in a recovery tank. The effect of GH on apoptosis in fish inner ear end organs were examined using TUNEL-labeling. Cell proliferation was measured by BrdU incorporation assay. Hair cell regeneration was determined by phalloidin-labeling to allow visualization of hair cell stereociliary bundles. After GH injection, the numbers of TUNEL-labeled cells showed a significant decrease in all three inner ear end organs (saccule, lagena, utricle), suggesting GH may suppress hair cell death induced by acoustic trauma. Higher levels of cell proliferation were also observed in the ears of GH-injected fish, indicating that GH is capable of activating cell mitosis in the zebrafish auditory system. Following sound exposure, the GH-injected group exhibited greater numbers of saccular hair cell bundles compared to the buffer-injected group. These results indicate that GH promotes hair cell regeneration following acoustic damage. Future studies are needed to examine the potential therapeutic benefits of GH in the mammalian ear.
150

Environment-induced Phenotypic Plasticity in the Teeth of Hatchery and Wild Largemouth Bass, <i>Micropterus floridanus</i>

Selvaraj, Tamilselvi 01 August 2010 (has links)
Successful stock enhancement of hatchery-reared fish depends heavily on the release of individuals able to demonstrate strong survival skills. Overall survival of fishes is a reflection of a successful blend of physiology, anatomy, and behavior. With fishes being highly phenotypically plastic, the potential exists for all aspects of hatcheryreared fish to vary significantly from their wild counterparts while having potentially adverse effects on their survival after release. Previous analyses have demonstrated significant differences between the feeding behavior of hatchery-reared and wild caught largemouth bass (Micropterus floridanus) in the laboratory, as well as differences in the development of the skull between these two groups. The aim of this study was to determine if oral and pharyngeal jaw dentition differed between hatchery and wild bass. Scanning electron micrographs of the oral and pharyngeal jaws from an overlapping size range of 30 hatchery-reared and 30 wild bass were compared for the number and characteristics of oral and pharyngeal teeth. Wild bass were found to have features which would presumably allow more efficient capture of prey. The results of the study suggested that wild bass exhibited greater number of teeth when compared to hatchery reared bass. They also exhibited oral and pharyngeal teeth which were greater in length, and pharyngeal teeth that were greater in width when compared to hatchery-reared bass. This deficiency in dentition could have a significant effect on prey-capture success when introduced into the wild. We suggest that exposure to wild prey during the grow-out phase of aquaculture could provide the necessary adaptive plasticity of hatchery-reared bass dentition

Page generated in 0.0951 seconds