Spelling suggestions: "subject:"arctic ocean"" "subject:"aorctic ocean""
61 |
The dynamics of dense water cascades : from laboratory scales to the Arctic OceanWobus, Fred January 2013 (has links)
The sinking of dense shelf waters down the continental slope (or “cascading”) contributes to oceanic water mass formation and carbon cycling. Cascading is therefore of significant importance for the global overturning circulation and thus climate. The occurrence of cascades is highly intermittent in space and time and observations of the process itself (rather than its outcomes) are scarce. Global climate models do not typically resolve cascading owing to numerical challenges concerning turbulence, mixing and faithful representation of bottom boundary layer dynamics. This work was motivated by the need to improve the representation of cascading in numerical ocean circulation models. Typical 3-D hydrostatic ocean circulation models are employed in a series of numerical experiments to investigate the process of dense water cascading in both idealised and realistic model setups. Cascading on steep bottom topography is modelled using POLCOMS, a 3-D ocean circulation model using a terrain-following s-coordinate system. The model setup is based on a laboratory experiment of a continuous dense water flow from a central source on a conical slope in a rotating tank. The descent of the dense flow as characterised by the length of the plume as a function of time is studied for a range of parameters, such as density difference, speed of rotation, flow rate and (in the model) diffusivity and viscosity. Very good agreement between the model and the laboratory results is shown in dimensional and non-dimensional variables. It is confirmed that a hydrostatic model is capable of reproducing the essential physics of cascading on a very steep slope if the model correctly resolves velocity veering in the bottom boundary layer. Experiments changing the height of the bottom Ekman layer (by changing viscosity) and modifying the plume from a 2-layer system to a stratified regime (by enhancing diapycnal diffusion) confirm previous theories, demonstrate their limitations and offer new insights into the dynamics of cascading outside of the controlled laboratory conditions. In further numerical experiments, the idealised geometry of the conical slope is retained but up-scaled to oceanic dimensions. The NEMO-SHELF model is used to study the fate of a dense water plume of similar properties to the overflow of brine-enriched shelf waters from the Storfjorden in Svalbard. The overflow plume, resulting from sea ice formation in the Storfjorden polynya, cascades into the ambient stratification resembling the predominant water masses of Fram Strait. At intermediate depths between 200-500m the plume encounters a layer of warm, saline AtlanticWater. In some years the plume ‘pierces’ the Atlantic Layer and sinks into the deep Fram Strait while in other years it remains ‘arrested’ at Atlantic Layer depths. It has been unclear what parameters control whether the plume pierces the Atlantic Layer or not. In a series of experiments we vary the salinity ‘S’ and the flow rate ‘Q’ of the simulated Storfjorden overflow to investigate both strong and weak cascading conditions. Results show that the cascading regime (piercing, arrested or ‘shaving’ - an intermediate case) can be predicted from the initial values of S and Q. In those model experiments where the initial density of the overflow water is considerably greater than of the deepest ambient water mass we find that a cascade with high initial S does not necessarily reach the bottom if Q is low. Conversely, cascades with an initial density just slightly higher than the deepest ambient layer may flow to the bottom if the flow rate Q is high. A functional relationship between S/Q and the final depth level of plume waters is explained by the flux of potential energy (arising from the introduction of dense water at shallow depth) which, in our idealised setting, represents the only energy source for downslope descent and mixing. Lastly, the influence of tides on the propagation of a dense water plume is investigated using a regional NEMO-SHELF model with realistic bathymetry, atmospheric forcing, open boundary conditions and tides. The model has 3 km horizontal resolution and 50 vertical levels in the sh-coordinate system which is specially designed to resolve bottom boundary layer processes. Tidal effects are isolated by comparing results from model runs with and without tides. A hotspot of tidally-induced horizontal diffusion leading to the lateral dispersion of the plume is identified at the southernmost headland of Spitsbergen which is in close proximity to the plume path. As a result the lighter fractions in the diluted upper layer of the plume are drawn into the shallow coastal current that carries Storfjorden water onto the Western Svalbard Shelf, while the dense bottom layer continues to sink down the slope. This bifurcation of the plume into a diluted shelf branch and a dense downslope branch is enhanced by tidally-induced shear dispersion at the headland. Tidal effects at the headland are shown to cause a net reduction in the downslope flux of Storfjorden water into deep Fram Strait. This finding contrasts previous results from observations of a dense plume on a different shelf without abrupt topography. The dispersive mechanism which is induced by the tides is identified as a mechanism by which tides may cause a relative reduction in downslope transport, thus adding to existing understanding of tidal effects on dense water overflows.
|
62 |
Atlantic Water properties and circulation north of Svalbard in a changing Arctic / Propriétés et circulation des Eaux Atlantiques au nord du Svalbard dans un Arctique en mutationKoenig, Zoé 20 October 2017 (has links)
Les Eaux Atlantiques (AW) sont cruciales pour le budget de sel et de chaleur de l'Arctique. Ce doctorat apporte de nouvelles informations sur l'entrée des AW dans la région du nord Svalbard. Les plateformes IAOOS ont collecté pendant la campagne N-ICE2015 les premières données hydrographiques d'hiver de la région. Elles ont documentées des eaux chaudes peu profondes sur le talus continental du Svalbard qui ont généré des flux de chaleur océan-glace atteignant 400 W/m2 et faisant fondre la glace. Cette chaleur est amenée des AW vers la surface par des ondes quasi-inertielles causées par des tempêtes hivernales, de grandes marées barotropes sur des pentes raides et/ou des ajustements géostrophiques. Les extensions de glace sont très différentes entre 2015 et 2016. Les sorties du modèle opérationnel de Mercator Ocean (1/12°) suggèrent que les flux de chaleur orientés vers la surface et induits par la convection expliquent ces différences. En plus de la Svalbard Branch et de la Yermak Branch, le modèle présente un chemin robuste l'hiver à travers le plateau du Yermak: la Yermak Pass Branch. Enfin, le modèle suggère une activité méso-échelle importante le long du courant des AW. Les propriétés de la Yermak Pass sont examinées avec un an de données ADCP (2007-2008) dans la Yermak Pass. Le courant est dominé par la marée. En hiver, des tourbillons baroclines d'AW avec une périodicité de 5-10 jours et des entrées sporadiques d'AW tous les un/deux mois sont observés, transportant les AW vers l'Est. Le modèle suggère que la Yermak Pass Branch est une structure robuste d'hiver les 10 dernières années et transporte en moyenne 31% du transport volumique du West Spitsbergen Current. / The Atlantic Water (AW) inflow is crucial for the heat and salt budget of the Arctic. This PhD thesis brings new insights to the inflow of AW in the area north of Svalbard. The IAOOS (Ice Atmosphere Ocean Observing System) platforms were deployed during the N-ICE2015 expedition which gathered the first winter hydrographic data in the area. They document shallow warm water over the Svalbard continental slope that melts sea ice with ice-ocean heat fluxes reaching up to 400W.m-2. Heat is brought from the AW layer up to the surface through near-inertial waves generated by winter storms, large barotropic tides over steep topography and/or geostrophic adjustments. Sea ice extent largely differs between winters 2015 and 2016. 1/12° operational model outputs from Mercator-Ocean suggest that convection-induced upward heat fluxes explain the differences. Model outputs are also used to examine the AW inflow pathways : besides the Svalbard Branch and the Yermak Branch, the model shows an AW winter pathway not much documented before : the Yermak Pass Branch across the Yermak Plateau. Finally, the model suggests an important mesoscale activity throughout the AW flow. The Yermak Pass Branch properties are examined using one-year (2007-2008) of moored ADCP data in the Yermak Pass. The flow is largely dominated by tides. In winter, baroclinic eddies of AW with a periodicity of 5 to 10 days and pulses of AW monthly/bimonthly are found, carrying AW eastward through the Pass. Model outputs suggest that the Yermak Pass Branch is a robust winter pattern over the last 10 years, carrying on average 31% of the volume transport of the West Spitsbergen Current.
|
63 |
Arctic Ocean circulation in an idealized numerical modelSugimura, Peter Joseph January 2008 (has links)
Thesis (S.M.)--Joint Program in Physical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2008. / Includes bibliographical references (p. 57-58). / The mid-to-deep Arctic Ocean is generally characterized by a cyclonic circulation, contained along shelves and ridges. Here we analyze the general Arctic circulation using an idealized numerical model consisting of a circular basin with two channels acting as inflow and outflow. We analyze the circulation (direction, strength and sensitivity) for wind forcing with and without bathymetry (ridges), and with and without stratification. We find that the circulation is modified drastically by both bathymetry and wind direction, where an altered wind field can change both the direction of the horizontal basin circulation as well as the strength of the inflow and outflow. The idealized circulations imply that the Arctic circulation, and the associated export of freshwater, can easily switch states in a changing climate. / by Peter Joseph Sugimura. / S.M.
|
64 |
CHARACTERIZATION OF PALEOCLIMATE AND MARINE PROCESSES ASSOCIATED WITH HOLOCENE SEDIMENTATION ON THE CHUKCHI MARGIN, ARCTIC OCEANSiriwardana, Chandawimal H. 30 July 2014 (has links)
No description available.
|
65 |
La détermination du statut juridique de l'océan Glacial arctique par le droit international public / The determination of the legal status of the Glacial Arctic Ocean by public international lawJankowiak, Aleksy 13 June 2018 (has links)
L’océan Arctique est confronté aujourd’hui à des enjeux d’ordre souverain et environnemental. D’une part, ses États riverains revendiquent de vastes territoires maritimes. D’autre part, l’environnement de l’océan Arctique subit de multiples atteintes. La région est notamment affectée par de nombreux polluants. Puis, elle subit également de plein fouet les effets néfastes du réchauffement climatique. Le but de cette étude est de déterminer le statut juridique de l’océan Arctique au travers de ces différentes questions. Plus précisément, cette étude a pour objet l’identification, l’analyse et l’interprétation des régimes régionaux et internationaux applicables, et des problématiques de droit international s’y rapportant, afin d’appréhender le statut juridique de l’océan Arctique dans sa globalité et de déterminer sa capacité à faire face auxdits enjeux et à évoluer dans le cadre d’une coopération et d’une gouvernance interétatiques en constant développement / The Arctic Ocean is facing environmental and territorial challenges. On one hand, the coastal states are claiming vast marine territories. On the other hand, the Arctic Ocean environment suffers from many damages. In particular, the region is affected by a lot of pollutants. Then, the region also bears the brunt of the harmful effects of climate change. This study aims to determinate the legal status of the Arctic Ocean through these different issues. More precisely, this study aims to identify, to analyse and to interpret the regional and international legal regimes which apply to the Arctic Ocean, and their legal issues, in order to consider the legal status of the Arctic Ocean as a whole and to determinate its capacity to deal with environmental and territorial challenges, and to progress in the context of an intergovernmental governance and cooperation in constant development
|
66 |
Accelerator Mass Spectrometry of 36Cl and 129I : Analytical Aspects and ApplicationsAlfimov, Vasily January 2004 (has links)
Two long-lived halogen radionuclides (36Cl, T1/2 = 301 kyr, and 129I, T1/2 = 15.7 Myr) have been studied by means of Accelerator Mass Spectrometry (AMS) at the Uppsala Tandem Laboratory. The 36Cl measurements in natural samples using a medium-sized tandem accelerator (~1 MeV/amu) have been considered. A gas-filled magnetic spectrometer (GFM) was proposed for the separation of 36Cl from its isobar, 36S. Semi-empirical Monte-Carlo ion optical calculations were conducted to define optimal conditions for separating 36Cl and 36S. A 180° GFM was constructed and installed at the dedicated AMS beam line. 129I has been measured in waters from the Arctic and North Atlantic Oceans. Most of the 129I currently present in the Earth's surface environment can be traced back to liquid and gaseous releases from the nuclear reprocessing facilities at Sellafield (UK) and La Hague (France). The anthropogenic 129I inventory in the central Arctic Ocean was found to increase proportionally to the integrated 129I releases from these reprocessing facilities. The interaction and origin of water masses in the region have been clearly distinguished with the help of 129I labeling. Predictions based on a compartment model calculation showed that the Atlantic Ocean and deep Arctic Ocean are the major sinks for the reprocessed 129I. The variability in 129I concentration measured in seawater along a transect from the Baltic Sea to the North Atlantic suggests strong enrichment in the Skagerrak–Kattegat basin. The 129I inventory in the Baltic and Bothnian Seas is equal to ~0.3% of the total liquid releases from the reprocessing facilities. A lake sediment core sampled in northeastern Ireland was analyzed for 129I to study the history of the Sellafield releases, in particular the nuclear accident of 1957. High 129I concentration was observed corresponding to 1990 and later, while no indication of the accident was found. The results of this thesis research clearly demonstrate the uniqueness and future potential of 129I as a tracer of processes in both marine and continental archives.
|
67 |
Mapping bathymetry : From measurement to applicationsHell, Benjamin January 2011 (has links)
Surface elevation is likely the most fundamental property of our planet. In contrast to land topography, bathymetry, its underwater equivalent, remains uncertain in many parts of the World ocean. Bathymetry is relevant for a wide range of research topics and for a variety of societal needs. Examples, where knowing the exact water depth or the morphology of the seafloor is vital include marine geology, physical oceanography, the propagation of tsunamis and documenting marine habitats. Decisions made at administrative level based on bathymetric data include safety of maritime navigation, spatial planning along the coast, environmental protection and the exploration of the marine resources. This thesis covers different aspects of ocean mapping from the collection of echo sounding data to the application of Digital Bathymetric Models (DBMs) in Quaternary marine geology and physical oceanography. Methods related to DBM compilation are developed, namely a flexible handling and storage solution for heterogeneous sounding data and a method for the interpolation of such data onto a regular lattice. The use of bathymetric data is analyzed in detail for the Baltic Sea. With the wide range of applications found, the needs of the users are varying. However, most applications would benefit from better depth data than what is presently available. Based on glaciogenic landforms found in the Arctic Ocean seafloor morphology, a possible scenario for Quaternary Arctic Ocean glaciation is developed. Our findings suggest large ice shelves around parts of the Arctic Ocean during Marine Isotope Stage 6, 130–200 ka. Steered by bathymetry, deep water from the Amerasian Basin of the Arctic Ocean flows over the central Lomonosov Ridge into the Eurasian Basin. This water mass is traced on its continuing way towards Greenland and the Fram Strait. At the Morris Jesup Rise, bathymetry plays an important role in the partial re-circulation of the water into the Amerasian Basin. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 3: Submitted.</p>
|
68 |
A reconnaissance geophysical survey of the North, Norwegian, Greenland, Kara and Barents Seas and the Arctic OceanVogt, Peter R. January 1968 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1968. / Typescript. Vita. Description based on print version record. Includes bibliographical references (leaves 127-133).
|
69 |
Development and use of satellite-derived sea-surface temperature data for the nearshore North Pacific and Arctic Oceans : temperature pattern analysis and implications for climate change at ecoregional scalePayne, Meredith C. 12 March 2012 (has links)
The quantification and description of sea surface temperature (SST) is critically important because it can influence the distribution, migration, and invasion of marine species; furthermore, SSTs are expected to be affected by climate change. Recent research indicates that there has been a warming trend in ocean temperatures over the last 50 years. Hence, we sought to identify and demonstrate how a particularly germane SST dataset can be used within the scope of global climate change research. For this project we assembled a 29-year nearshore time series of mean monthly SSTs along the North Pacific coastline, as well as mean monthly SSTs for ice-free regions of the Arctic, using remotely-sensed satellite data collected with the Advanced Very High Resolution Radiometer (AVHRR) instrument. By providing detailed information concerning both dataset generation and data limitations, we aimed to make these data comprehensible to an expanded audience concentrating on life sciences rather than the traditionally physical science-based community. Furthermore, by making these data freely and publically available in multiple formats, including GIS (geographic information systems) layers, we expand their visibility and the extent of their use. We then used the dataset to describe SST patterns of nearshore (< 20 km offshore) regions of 16 North Pacific ecoregions, and of ice-free regions of 20 Arctic ecoregions, as delineated by the Marine Ecoregions of the World (MEOW) hierarchical schema. Our work creates a better understanding of present temperature regimes in these critically sensitive areas, from which we can draw several basic conclusions. 1) AVHRR SST measurements alone are sufficient to identify temperature patterns pertinent to determining health of ecosystems; 2) Within the nearshore North Pacific, ecoregions along the California Current System are most vulnerable to habitat-altering SST changes; 3) sea ice distribution is a major factor affecting SSTs in Arctic ecoregions, causing concern for the welfare of Arctic species. / Graduation date: 2012
|
70 |
Patrons saisonniers de transformation du carbone et efficacité métabolique des communautés bactériennes du golfe d’Amundsen, Arctique canadienNguyen, Dan 10 1900 (has links)
Les réchauffements climatiques associés aux activités anthropiques ont soumis les écosystèmes arctiques à des changements rapides qui menacent leur stabilité à court terme. La diminution dramatique de la banquise arctique est une des conséquences les plus concrètes de ce réchauffement. Dans ce contexte, comprendre et prédire comment les systèmes arctiques évolueront est crucial, surtout en considérant comment les flux de carbone (C) de ces écosystèmes - soit des puits nets, soit des sources nettes de CO2 pour l'atmosphère - pourraient avoir des répercussions importantes sur le climat.
Le but de cette thèse est de dresser un portrait saisonnier de l’activité bactérienne afin de déterminer l’importance de sa contribution aux flux de carbone en Arctique. Plus spécifiquement, nous caractérisons pour la première fois la respiration et le recours à la photohétérotrophie chez les microorganismes du golfe d’Amundsen. Ces deux composantes du cycle du carbone demeurent peu décrites et souvent omises des modèles actuels, malgré leur rôle déterminant dans les flux de C non seulement de l’Arctique, mais des milieux marins en général.
Dans un premier temps, nous caractérisons la respiration des communautés microbiennes (RC) des glaces de mer. La connaissance des taux de respiration est essentielle à l’estimation des flux de C, mais encore limitée pour les milieux polaires. En effet, les études précédentes dans le golfe d’Amundsen n’ont pas mesuré la RC. Par la mesure de la respiration dans les glaces, nos résultats montrent des taux élevés de respiration dans la glace, de 2 à 3 fois supérieurs à la colonne d'eau, et une production bactérienne jusqu’à 25 fois plus importante. Ces résultats démontrent que la respiration microbienne peut consommer une proportion significative de la production primaire (PP) des glaces et pourrait jouer un rôle important dans les flux biogéniques de CO2 entre les glaces de mer et l’atmosphère (Nguyen et Maranger, 2011).
Dans un second temps, nous mesurons la respiration des communautés microbiennes pélagiques du golfe d’Amundsen pendant une période de 8 mois consécutif, incluant le couvert de glace hivernal. En mesurant directement la consommation d'O2, nous montrons une RC importante, mesurable tout au long de l’année et dépassant largement les apports en C de la production primaire. Globalement, la forte consommation de C par les communautés microbiennes suggère une forte dépendance sur recyclage interne de la PP locale. Ces observations ont des conséquences importantes sur notre compréhension du potentiel de séquestration de CO2 par les eaux de l’Océan Arctique (Nguyen et al. 2012).
Dans un dernier temps, nous déterminons la dynamique saisonnière de présence (ADN) et d’expression (ARN) du gène de la protéorhodopsine (PR), impliqué dans la photohétérotrophie chez les communautés bactérienne. Le gène de la PR, en conjonction avec le chromophore rétinal, permet à certaines bactéries de capturer l’énergie lumineuse à des fins énergétiques ou sensorielles. Cet apport supplémentaire d’énergie pourrait contribuer à la survie et prolifération des communautés qui possèdent la protéorhodopsine. Bien que détectée dans plusieurs océans, notre étude est une des rares à dresser un portrait saisonnier de la distribution et de l’expression du gène en milieu marin. Nous montrons que le gène de la PR est présent toute l’année et distribué dans des communautés diversifiées. Étonnamment, l’expression du gène se poursuit en hiver, en absence de lumière, suggérant soit qu’elle ne dépend pas de la lumière, ou que des sources de photons très localisées justifie l’expression du gène à des fins sensorielles et de détection (Nguyen et al., soumis au journal ISME).
Cette thèse contribue à la compréhension du cycle du C en Arctique et innove par la caractérisation de la respiration et de l’efficacité de croissance des communautés microbiennes pélagiques et des glaces de mer. De plus, nous montrons pour la première fois une expression soutenue de la protéorhodopsine en Arctique, qui pourrait moduler la consommation de C par la respiration et justifier son inclusion éventuelle dans les modélisations du cycle du C. Dans le contexte des changements climatiques, il est clair que l'importance de l’activité bactérienne a été sous-estimée et aura un impact important dans le bilan de C de l'Arctique. / Arctic ecosystems are undergoing rapid changes, primarily due to unprecedented climatic warming as a function of anthropogenic activities, which threaten their short-term stability. One of the most dramatic impacts has been the loss and change in annual sea ice. Understanding and predicting how these systems will evolve is crucial, especially if considering how carbon (C) fluxes from these ecosystems – either net sinks or net CO2 sources for the atmosphere – could have important repercussions on global climate.
The objective of this thesis is to establish a seasonal portrait of bacterial activity to characterize its contribution to Arctic carbon fluxes. Specifically, we quantify for the first time microbial respiration in sea-ice and the water column and explore the use of photoheterotrophy by microorganism over an annual cycle in the Amundsen Gulf of the Arctic Ocean. These components of carbon cycling remain poorly understood and infrequently directly measured. As a consequence they are either extrapolated or omitted from models, despite their significant role in C dynamics not only in the Arctic, but also in marine systems in general.
First, we characterise respiration in sea-ice microbial communities (CR). An understanding of respiration rates is essential for accurate estimation of C fluxes, but the role of respiration in sea ice is poorly understood. This work represents the first comprehensive evaluation of respiration in polar sea ice to date. Using novel O2 consumption measurements in sea-ice, we found high respiration rates in sea-ice, 2 to 3 times higher than in the water column and bacterial production rates up to 25 times higher. These results show that microbial respiration can consume a significant portion of sea ice primary production (PP) and play a key role in biogenic CO2 fluxes between sea-ice and the atmosphere (Nguyen and Maranger, 2011).
Second, we measure respiration of pelagic microbial communities of Amundsen Gulf over an eight-month period, including under the winter ice-cover. By measuring directly O2 consumption, we show high CR, measurable over the whole year and greatly surpassing C inputs from PP. Globally, high C consumption by microbial communities supports a high reliance on internal recycling of local PP. These observations have important consequences on our understanding of the CO2 sequestering potential of the Arctic Ocean (Nguyen et al., 2012)
Finally, we describe the seasonal patterns in presence (DNA) and expression (RNA) of the proteorhodospin (PR) gene, involved in bacterial photoheterotrophy. The PR gene, combined with the retinal chromophore, allows bacteria to capture energy from light towards energetic or sensory purposes. This additional energy source could contribute to the survival and proliferation of bacterial communities expressing the gene in the highly variable polar environment. Although PR has been found in many oceans, this study represents a unique time-series that follows the seasonal distribution and expression of the gene in a natural marine system. We show that the PR gene was present over the whole study period and widely distributed in diverse bacterial communities. Surprisingly, we observed continued PR expression over winter, in the absence of sunlight. This suggests either that the PR’s expression does not depend on light or, that other very localized photon sources could justify PR expression for detection and sensory functions (Nguyen et al., submitted to the ISME journal).
This thesis contributes to the understanding of Arctic carbon cycling and includes several novel elements such as the characterization of respiration and bacteria growth efficiency in both pelagic and sea-ice habitats. The use of an alternative C pathway by bacteria in the Polar ocean was also explored for the first-time in a time-series. The observed sustained expression of the PR gene in the Arctic could modulate C consumption by respiration and justify its inclusion in future models of C cycling. In a context of climate change, it is clear that bacterial activity has been underestimated and how this will change in a warmer Arctic will have a significant impact in the ecosystem’s overall C budget.
|
Page generated in 0.0605 seconds