• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 100
  • 42
  • 25
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 433
  • 91
  • 89
  • 58
  • 55
  • 55
  • 38
  • 34
  • 34
  • 32
  • 30
  • 29
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Investigation of a Plant Mitochondrial Tat System

Eudy, Kathryn E. 18 November 2021 (has links)
No description available.
312

Analysis of Protein Arginine Methyltransferase Function during Myogenic Gene Transcription: A Dissertation

Dacwag, Caroline S. 09 July 2008 (has links)
Skeletal muscle differentiation requires synergy between tissue-specific transcription factors, chromatin remodeling enzymes and the general transcription machinery. Here we demonstrate that two distinct protein arginine methyltransferases are required to complete the differentiation program. Prmt5 is a type II methyltransferase, symmetrically dimethylates histones H3 and H4 and has been shown to play a role in transcriptional repression. An additional member of the Prmt family, Carm1 is a type I methyltransferase, and asymmetrically methylates histone H3 and its substrate proteins. MyoD regulates the activation of the early class of skeletal muscle genes, which includes myogenin. Prmt5 was bound to and dimethylates H3R8 at the myogenin promoter in a differentiation-dependent fashion. When proteins levels of Prmt5 were reduced by antisense, disappearance of H3R8 dimethylation and Prmt5 binding was observed. Furthermore, binding of Brg1 to regulatory sequences of the myogenin promoter was abolished. All subsequent events relying on Brg1 function, such as chromatin remodeling and stable binding by muscle specific transcription factors such as MyoD, were eliminated. Robust association of Prmt5 and dimethylation of H3R8 at myogenin promoter sequences was observed in mouse satellite cells, the precursors of mature myofibers. Prmt5 binding and histone modification were observed to a lesser degree in mature myofibers. Therefore, these results indicate that Prmt5 is required for dimethylating histone at the myogenin locus during skeletal muscle differentiation in order to facilitate the binding of Brg1, the ATPase subunit of the chromatin remodeling complex SWI/SNF. Further exploration of the role of Prmt5 during the activation of the late class of muscle genes revealed that though Prmt5 is associated with and dimethylates histones at the regulatory elements of late muscle genes in tissue and in culture, it was dispensable for late gene activation. Previous reports had indicated that Carm1 was involved during late gene activation. We observed that Carm1 was bound to and responsible for dimethylating histones at late muscle gene promoters in tissue and in culture. In contrast to Prmt5, a complete knockout of Carm1 resulted in abrogation of late muscle gene activation. Furthermore, loss of Carm1 binding and dimethylated histones resulted in a disappearance of Brg1 binding and chromatin remodeling at late muscle gene loci. Time course chromatin immunoprecipitations revealed that Carm1 binding and histone dimethylation occurred concurrently with the onset of late gene activation. In vitro binding assays revealed that an interaction between Carm1, myogenin and Mef2D exists. These results demonstrate that Carm1 is recruited to the regulatory sequences of late muscle genes via its interaction with either myogenin or Mef2D and is responsible for dimethylates histones in order to facilitate the binding of Brg1. Therefore, these results indicate that during skeletal muscle differentiation, distinct roles exist for these Prmts such that Prmt5 is required for activation of early genes while Carm1 is essential for late gene induction.
313

The RNA Binding Protein SRSF1 modulates Immune and Cancer pathways by regulating MyD88 transcription

Unknown Date (has links)
Serine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated following SRSF1 overexpression. Pathway analysis showed that genes in the TNF/IL17 pathways were enriched in this dataset. Furthermore, we showed that MyD88, a strong activator of TNF transcription through transcription factors NF-κB and AP-1, is a primary target of SRSF1’s transcriptional activity. We propose that SRSF1 activates the transcription factors NF-κB and AP-1 through MyD88 pathway. SRSF1 overexpression regulates several genes that are deregulated in malignancies and immune disease, suggesting a role for SRSF1’s transcriptional activity in oncogenesis and immune response regulation. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
314

Development of Novel Methods and their Utilization in the Analysis of the Effect of the N-terminus of Human Protein Arginine Methyltransferase 1 Variant 1 on Enzymatic Activity, Protein-protein Interactions, and Substrate Specificity

Suh-Lailam, Brenda Bienka 01 May 2010 (has links)
Protein arginine methyltransferases (PRMTs) are enzymes that catalyze the methylation of protein arginine residues, resulting in the formation of monomethylarginine, and/or asymmetric or symmetric dimethylarginines. Although understanding of the PRMTs has grown rapidly over the last few years, several challenges still remain in the PRMT field. Here, we describe the development of two techniques that will be very useful in investigating PRMT regulation, small molecule inhibition, oligomerization, protein-protein interaction, and substrate specificity, which will ultimately lead to the advancement of the PRMT field. Studies have shown that having an N-terminal tag can influence enzyme activity and substrate specificity. The first protocol tackles this problem by developing a way to obtain active untagged recombinant PRMT proteins. The second protocol describes a fast and efficient method for quantitative measurement of AdoMet-dependent methyltranseferase activity with protein substrates. In addition to being very sensitive, this method decreases the processing time for the analysis of PRMT activity to a few minutes compared to weeks by traditional methods, and generates 3000-fold less radioactive waste. We then used these methods to investigate the effect of truncating the NT of human PRMT1 variant 1 (hPRMT1-V1) on enzyme activity, protein-protein interactions, and substrate specificity. Our studies show that the NT of hPRMT1-V1 influences enzymatic activity and protein-protein interactions. In particular, methylation of a variety of protein substrates was more efficient when the first 10 amino acids of hPRMT1v1 were removed, suggesting an autoinhibitory role for this small section of the N-terminus. Likewise, as portions of the NT were removed, the altered hPRMT1v1 constructs were able to interact with more proteins. Overall, my studies suggest the the sequence and length of the NT of hPRMT1v1 is capable of enforcing specific protein interactions.
315

A Modified Adhesive System for Use in Treatment of Dentin Hypersensitivity

AlShehri, Aram Mushabbab 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI)
316

Direct evidence for the age-dependent demise of GNAS-mutated cells in oral fibrous dysplasia / 顎顔面領域に発症した線維性異形成症における加齢に伴うGNAS変異細胞の減少

Isobe, Yuu 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第21618号 / 医博第4424号 / 新制||医||1033(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 大森 孝一, 教授 松田 秀一, 教授 安達 泰治 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
317

Effects of arginine, vitamin E and vitamin C on cardiopulmonary function and ascites parameters in broilers exposed to cold temperature

Kawthekar, Sunil Bajirao. January 2007 (has links)
No description available.
318

Arg-Gly-Asp (RGD) conjugated aliphatic acids as micellar drug carrier for targeted drug delivery

Shen, Steve I. 01 January 2004 (has links) (PDF)
Targeted drug delivery is desired in cancer therapy since most of the side effects common to chemotherapy are related to the toxicity of the drug. Integrin over-expression has been shown in various cancer cells and can be exploited for targeted drug delivery. The goal of this study is to design amphiphilic conjugates with targeting motifs as a targeted drug delivery carrier. Toward this effort, novel amphiphilic conjugates of the Arg-Gly-Asp (RGD) peptide or GRGDS was linked to aliphatic acids of varying chain length. The hypothesis is that these novel amphiphilic conjugates, at concentrations above the critical micelle concentration (CMC), can form micelles in aqueous environment, encapsulate poorly-water soluble drugs, and target the α v β 3 integrin. The amphiphilic conjugate is also hypothesized to serve as targeting moiety in mixed micelle drug delivery system using Pluronic block copolymer. Synthesis of RGD amphiphilic conjugates was achieved by converting carboxylic acids into more reactive N-hydroxysuccinimidyl derivative and converting the carboxylic functional group of peptide into methyl ester. Then the activated NHS aliphatic ester was conjugated with methyl-protected peptide in the presence of organic base and methyl ester was removed in NaOH and subsequently neutralized. Intermediates and final products were characterized by MS, FTIR, and NMR. Micelle formation occurred in concentration of 0.015 to 0.12 mM for C 14 -RGD, C 16 -RGD, C 18 -RGD, and C 18 -GRGDS. Amphiphilic conjugate mixed with Pluronic L121 and Pluronic P104 (5% C 18 -RGD/L121 and 10% C 18 -GRGDS/P104) formed micelles at lower CMC of 0.0006 and 0.01 mM, respectively. Solubility of Taxol in water was improved by 87% when encapsulated in C 18 -RGD micelle above CMC. The solubility was increased 7 fold and 18 fold in mixed micelles of 5% C 18 -RGD/P104 and 5% C 18 -RGD/L121 above CMC. Three different drugs (DOX, Taxol, and etoposide) were used to evaluate the efficacy of the targeting C 18 -GRGDS micelle carrier alone or C 18 -RGD mixed with Pluronic block copolymers micelle. All 3 drugs significantly enhanced cytotoxicity toward cancer cells when loaded in micelle carrier above CMC. With same DOX concentration, C 18 -GRGDS micelle carrier significantly decreased percent of viable cells (12.9 ± 1.2%) above CMC when compared to concentrations below CMC (24.1 ± 1.0%). Mixed micelle of targeting amphiphile and Pluronic loaded with Taxol above CMC significantly decreased the percent of viable cells (38.3 ± 7.9%) when compared to non-targeting Pluronic block copolymer micelle (56.0 ± 2.8%). (Abstract shortened by UMI.)
319

An Aminopeptidase Acting as a Potential Factor in Host Adaptation of Mycoplasma Gallinarum

Wan, Xiufeng 03 August 2002 (has links)
Unlike most other host-specific mycoplasmas, Mycoplasma gallinarum exists as a commensal with a host range including most poultry as well as some mammals. This property of M. gallinarum may reflect unique mechanisms for its colonization and persistence in hosts. Whereas M. gallinarum shows leucine and arginine aminopeptidase activity, the genes encoding the enzymes had not been cloned and characterized. We identified an aminopeptidase gene (APN) by oligonucleotide hybridization to a genomic library of M. gallinarum in lambda ZAPII bacteriophage. Nucleotide sequence analysis of overlapping phage clones identified a 1,362 bp open reading frame (ORF) encoding a putative leucine aminopeptidase gene. Database searches indicate that this ORF has 68% nucleotide identity and 51% amino acid identity with the M. salivarium leucine aminopeptidase gene. The active sites of the leucine aminopeptidases in other eukaryotes and prokaryotes were conserved in the cloned aminopeptidase gene. Northern-blot hybridization analysis showed that this ORF is expressed as a 1.5 kb transcript. Southern-blot hybridization analysis demonstrated this gene was present as a single copy in M. gallinarum. Characterization of the leucine aminopeptidase demonstrated that it is a metallo-aminopeptidase (EC 3.4.11.1) and is located in the cytoplasm with a weak interaction with the cell membrane. The subcellular location was further confirmed by immunoblotting with polyclonal anti-recombinant APN serum and M. gallinarum Triton-114 partitions. Immunoblotting results with sera from three chickens experimentally infected with M. gallinarum showed that there were very few proteins in M. gallinarum exposed to the host immune responses and that leucine aminopeptidase was not able to stimulate production of specific humoral antibody. Our results suggest that this leucine aminopeptidase play a role in nutrition supply for the host adaptation of M. gallinarum and that the enzyme was not strongly immunogenic.
320

Structural studies of cpTat component Tha4 in both native and synthetic membrane systems

Storm, Amanda R. 05 December 2013 (has links)
No description available.

Page generated in 0.0556 seconds