• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assembly Design and Evaluation in an Augmented Reality Environment

Pang, Y., Nee, Andrew Y. C., Youcef-Toumi, Kamal, Ong, S. K., Yuan, M. L. 01 1900 (has links)
The technologies and methodologies of assembly design and evaluation in the early design stage are highly significant to product development. This paper looks at a promising technology to mix real components (e.g. physical prototypes, assembly tools, machines, etc.) with virtual components to create an Augmented Reality (AR) interface for assembly process evaluation. The goal of this paper is to clarify the methodologies and enabling technologies of how to establish an AR assembly simulation and evaluation environment. The architecture of an AR assembly system is proposed and the important functional modules including AR environment set-up, design for assembly (DFA) analysis and AR assembly sequence planning in an AR environment are discussed in detail. / Singapore-MIT Alliance (SMA)
2

How Additive Manufacturing can Support the Assembly System Design Process

Johansson, Matilda, Sandberg, Robin January 2016 (has links)
In product manufacturing, assembly approximately represents 50% of the total work hours. Therefore, an efficient and fast assembly system is crucial to get competitive advantages at the global market and have the right product quality. Today, the verification of the assembly system is mostly done by utilizing software based simulation tools even though limitations have been identified. The purpose of this thesis is to identify when the use of additive manufacturing technology could be used in assessing the feasibility of the assembly system design. The research questions were threefold. First, identifying limitations that are connected with the used assembly simulation tools. Secondly, to investigate when additive manufacturing can act as a complement to these assembly simulations. Finally, to develop a framework that will assist the decision makers when to use additive manufacturing as a complement to assembly simulations. The researchers used the method of case study combined with a literature review. The case study collected data from semi-structured interviews, which formed the major portion of the empirical findings. Observations in a final assembly line and the additive manufacturing workshop provided valuable insights into the complexity of assembly systems and additive manufacturing technologies. In addition, document studies of the used visualization software at the case company resulted in an enhanced understanding of the current setting. The case study findings validate the limitations with assembly simulations described in theory. The most frequent ones are related to visibility, positioning, forces needed for the assembly operator, and accessibility between different parts. As both theory and case study findings are consistent in this respect, simulation engineers should be conscious of when to find other methods than simulation for designing the assembly system. One such alternative method is the utilization of additive manufacturing. The thesis outlines a number of situations where additive manufacturing indeed could act as a complement to assembly simulation. The authors argue that the results and findings to a large degree are applicable to other industries as the automotive sector is very global and competitive in nature and encompasses a large variety of complex assembly operations. A structured framework was also developed that could act as a decision support. The framework takes into account three dimensions that are crucial for the decision; (1) the assembly simulation limitation, (2) the context of the assembly and which parts are involved and (3) the possible limitations of additive manufacturing in the specific context. This impartial decision framework could help companies with complex assembly systems to know when to use additive manufacturing, as well as for which parts and subparts additive manufacturing is applicable. To increase the longevity of the decision framework, new improvements of assembly simulation tools and additive manufacturing technologies, respectively, should be incorporated in the framework.
3

Digital assembly process design for aircraft systems

Li, Tao 01 1900 (has links)
The research described in this thesis concentrates on the development of an integrated assembly process design for aircraft systems. Assembly process design is one of the most important and complicated activities in aircraft manufacturing. Many solutions are suggested in previous research to develop process design method. But gaps are found in assembly process design of aircraft system in following studies. In this research, an integration approach which combined with product development philosophy, design for assembly method and digital assembly technology is proposed to solve the issues in the whole product development lifecycle. Three case studies from different design phase are used to examine the integrated process design method. The research results demonstrate that the proposed digital process design method can be used to develop manufacturing strategies of system assembly in early design phase, and improve the accuracy and operability of assembly instructions according to 3-D assembly process plans in detailed design phase. The product design also benefits from this method in terms of correcting design errors in the concurrent engineering process. A proposed process planning system framework based on lightweight CAD is developed in this research. The customized assembly representation of 3DVIA system illustrates the advantages of lightweight CAD when applying in shop floor.
4

Understanding language and attention : brain-based model and neurophysiological experiments

Garagnani, Max January 2009 (has links)
This work concerns the investigation of the neuronal mechanisms at the basis of language acquisition and processing, and the complex interactions of language and attention processes in the human brain. In particular, this research was motivated by two sets of existing neurophysiological data which cannot be reconciled on the basis of current psycholinguistic accounts: on the one hand, the N400, a robust index of lexico-semantic processing which emerges at around 400ms after stimulus onset in attention demanding tasks and is larger for senseless materials (meaningless pseudowords) than for matched meaningful stimuli (words); on the other, the more recent results on the Mismatch Negativity (MMN, latency 100-250ms), an early automatic brain response elicited under distraction which is larger to words than to pseudowords. We asked what the mechanisms underlying these differential neurophysiological responses may be, and whether attention and language processes could interact so as to produce the observed brain responses, having opposite magnitude and different latencies. We also asked questions about the functional nature and anatomical characteristics of the cortical representation of linguistic elements. These questions were addressed by combining neurocomputational techniques and neuroimaging (magneto-encephalography, MEG) experimental methods. Firstly, a neurobiologically realistic neural-network model composed of neuron-like elements (graded response units) was implemented, which closely replicates the neuroanatomical and connectivity features of the main areas of the left perisylvian cortex involved in spoken language processing (i.e., the areas controlling speech output – left inferior-prefrontal cortex, including Broca’s area – and the main sensory input – auditory – areas, located in the left superior-temporal lobe, including Wernicke’s area). Secondly, the model was used to simulate early word acquisition processes by means of a Hebbian correlation learning rule (which reflects known synaptic plasticity mechanisms of the neocortex). The network was “taught” to associate pairs of auditory and articulatory activation patterns, simulating activity due to perception and production of the same speech sound: as a result, neuronal word representations distributed over the different cortical areas of the model emerged. Thirdly, the network was stimulated, in its “auditory cortex”, with either one of the words it had learned, or new, unfamiliar pseudoword patterns, while the availability of attentional resources was modulated by changing the level of non-specific, global cortical inhibition. In this way, the model was able to replicate both the MMN and N400 brain responses by means of a single set of neuroscientifically grounded principles, providing the first mechanistic account, at the cortical-circuit level, for these data. Finally, in order to verify the neurophysiological validity of the model, its crucial predictions were tested in a novel MEG experiment investigating how attention processes modulate event-related brain responses to speech stimuli. Neurophysiological responses to the same words and pseudowords were recorded while the same subjects were asked to attend to the spoken input or ignore it. The experimental results confirmed the model’s predictions; in particular, profound variability of magnetic brain responses to pseudowords but relative stability of activation to words as a function of attention emerged. While the results of the simulations demonstrated that distributed cortical representations for words can spontaneously emerge in the cortex as a result of neuroanatomical structure and synaptic plasticity, the experimental results confirm the validity of the model and provide evidence in support of the existence of such memory circuits in the brain. This work is a first step towards a mechanistic account of cognition in which the basic atoms of cognitive processing (e.g., words, objects, faces) are represented in the brain as discrete and distributed action-perception networks that behave as closed, independent systems.
5

Assembly simulation and evaluation based on generation of virtual workpiece with form defect / Simulation d’assemblage et évaluation basés sur la génération de pièces virtuelles avec défauts de forme

Yan, Xingyu 31 January 2018 (has links)
La géométrie d'une pièce fabriquée réelle diffère de la pièce virtuelle de CAO (Conception Assistée par Ordinateur. Cette différence est due à la somme des écarts inhérents à la fabrication. L'objectif de ce travail est d’introduire des pièces virtuelles ayant des défauts de forme (Skin Model Shape) dans les applications d'ingénierie afin de répondre aux exigences croissantes de l'industrie en matière de gestion de la qualité de la géométrie des produits. Les travaux traitent de divers aspects, particulièrement de la génération de défauts de forme, de la simulation d'assemblage et de la métrologie virtuelle.Les méthodes permettant de générer des défauts de forme sur des surfaces simples sont analysés et classées. En raison des défauts de forme, la combinaison de surfaces simples pour générer une pièce entière induit une incohérence géométrique au niveau des arêtes. Une méthode globale basée sur les éléments finis et une méthode locale basée sur le lissage local de maillage sont utilisées pour résoudre ce problème.Pour prédire l'écart des caractéristiques fonctionnelles, la simulation d'assemblage est effectuée en utilisant des surfaces avec défauts de forme. Une approche est développée sur la base de la condition de complémentarité linéaire et du torseur de petits déplacements pour prendre en compte les conditions aux limites de l'assemblage, telles que les déplacements et les charges.Des méthodes pour évaluer les écarts sur les modèles de surfaces avec défauts de forme sont également étudiées. Les spécifications sur le produit sont exprimées avec GeoSpelling et évaluées à l'aide du torseur de petits déplacements. Les méthodes développées sont intégrées dans un laboratoire virtuel pour l'apprentissage en ligne.Les études susmentionnées complètent et étendent les méthodes de gestion des tolérances basées sur GeoSpelling et le « skin » modèle. / The geometry of a real manufactured part differs from the virtual workpieces designed in Computer Aided Design (CAD) systems. This difference is due to the accumulation of unavoidable manufacturing deviations. The objective of this work is to implement virtual workpieces with form defects (Skin Model Shape) in engineering applications to meet the industry’s increasing demands in product geometry quality management. Various aspects are covered here, in particular form defect generation, assembly simulation and virtual metrology.Methods to generate form defects on simple surfaces are reviewed and classified. Due to form defects, the combination of simple surfaces to generate a whole part led to inconsistency on the edges. A global FEA-based method and a local mesh smoothing based method are used to overcome this issue.To predict the deviation of functional characteristics, assembly simulation is conducted using skin model shapes. An approach is developed based on the Linear Complementarity Condition and the Small Displacement Torsor to take into account assembly boundary conditions, such as displacements and loads.Methods to evaluate deviation values on skin model shapes are also studied. Product specifications are expressed with GeoSpelling, and evaluated using the Small Displacement Torsor method. The developed methods are integrated into an online Virtual Laboratory for e-learning.The above-mentioned studies complement and extend the tolerance management methods based on GeoSpelling and skin models.
6

The Art of Designing DNA Nanostructures with CAD Software

Glaser, Martin, Deb, Sourav, Seier, Florian, Agrawal, Amay, Liedl, Tim, Douglas, Shawn, Gupta, Manish K., Smith, David M. 05 May 2023 (has links)
Since the arrival of DNA nanotechnology nearly 40 years ago, the field has progressed from its beginnings of envisioning rather simple DNA structures having a branched, multi-strand architecture into creating beautifully complex structures comprising hundreds or even thousands of unique strands, with the possibility to exactly control the positions down to the molecular level. While the earliest construction methodologies, such as simple Holliday junctions or tiles, could reasonably be designed on pen and paper in a short amount of time, the advent of complex techniques, such as DNA origami or DNA bricks, require software to reduce the time required and propensity for human error within the design process. Where available, readily accessible design software catalyzes our ability to bring techniques to researchers in diverse fields and it has helped to speed the penetration of methods, such as DNA origami, into a wide range of applications from biomedicine to photonics. Here, we review the historical and current state of CAD software to enable a variety of methods that are fundamental to using structural DNA technology. Beginning with the first tools for predicting sequence-based secondary structure of nucleotides, we trace the development and significance of different software packages to the current state-of-the-art, with a particular focus on programs that are open source.
7

Investigation of VR as Visualization and Assembly-Simulation Tool

Götherström, Richard January 2024 (has links)
Across industries, Computer-aided design (CAD) programs are used to create vehicle parts. Simultaneously, virtual reality (VR) has become more common. Can these two co-existing technologies benefit one another? This thesis investigates how CAD modeling can be enhanced with the help of VR. Specifically, it focuses on importing CAD models during the runtime of a VR application, visualizing those models in real size. An additional feature includes the ability to interact with the imported CAD models, enabling assembly simulations. This thesis specifically explores how parts of electric autonomous trucks can be assembled in VR.  The results are moderately satisfying, with users expressing both satisfaction and dissatisfaction with certain aspects of VR as a tool in this context. However, only two users evaluated the application, indicating the need for a more extensive evaluation. / I flera industrier är CAD-program vanliga för att modellera delar till fordon. Samtidigt växer virtual reality (VR) fram och blir allt vanligare. Kan dessa två teknologier samexistera och dra nytta av varandra? Det här arbetet undersöker om CAD-modellering kan dra fördel av VR som ett verktyg för visualisering. En av de mer unika aspekterna av detta arbete är hur import av CAD-modeller under körtid  hanteras. En annan funktionalitet som undersöks är möjligheten att interagera med de importerade CAD-modellerna, vilket också öppnar för möjligheter att simulera monteringsprocesser. Resultatet var någorlunda tillfredsställande enligt intressenterna som utvärderade den slutgiltiga VR-applikationen. Det fanns aspekter som inte var helt tillfredsställande samtidigt som det fanns delar som var bra. Det ska beaktas att det endast var två intressenter som utvärderade den slutgiltiga applikationen, vilket indikerar att det behövs mer utvärdering för att fastställa ett gediget resultat.
8

Prediction and minimization of excessive distortions and residual stresses in compliant assembled structures

Yoshizato, Anderson 26 May 2020 (has links)
The procedure of joining flexible or nonrigid parts using applied loads is called compliant assembly, and it is widely used in automotive, aerospace, electronics, and appliance manufacturing. Uncontrolled assembly processes may produce geometric errors that can exceed design tolerances and induce an increment of elastic energy in the structure due to the accumulation of internal stresses. This condition might create unexpected deformations and residual stress distributions across the structure that compromise product functionality. This thesis presents a method based on nonlinear Finite Element Analysis (FEA), metamodelling, and optimization techniques to provide accurate and on-time shimming strategies to support the definition of optimum assembly strategies. An example of the method on a typical aerospace wing box structure is demonstrated in the present study. The delivered outputs intend to support the production line by anticipating the response of the structure under a specific assembly condition and presenting alternative assembly strategies that can be applied to address eventual predicted issues on product requirements. / Graduate

Page generated in 0.1148 seconds