• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 1
  • Tagged with
  • 29
  • 29
  • 11
  • 11
  • 9
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The group of automorphisms of non-associative commutative algebras associated with PSL(m,q), m>=3 /

Narang, Kamal January 1985 (has links)
No description available.
12

Cofree objects in the categories of comonoids in certain abelian monoidal categories

Abdulwahid, Adnan Hashim 01 August 2016 (has links)
We investigate cofree coalgebras, and limits and colimits of coalgebras in some abelian monoidal categories of interest, such as bimodules over a ring, and modules and comodules over a bialgebra or Hopf algebra. We nd concrete generators for the categories of coalgebras in these monoidal categories, and explicitly construct cofree coalgebras, products and limits of coalgebras in each case. This answers an open question in [4] on the existence of a cofree coring, and constructs the cofree (co)module coalgebra on a B-(co)module, for a bialgebra B.
13

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Amaya, Ana Melisa Paiba 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
14

Aplicações da teoria de Bases de Gröbner para o cálculo da Cohomologia de Hochschild / Aplications of the Groebner Basis theory to the computation of the Hochschild Cohomology

Ana Melisa Paiba Amaya 24 October 2018 (has links)
A Cohomologia de Hochschild é um invariante associado a álgebras o qual pode nos fornecer propiedades homologicas das álgebras e suas categorias de módulos. Além disso tem aplicações em Geometria Algébrica e Teoria de Representações, entre outras áreas. Para álgebras A sobre um corpo, o i-ésimo grupo de cohomologia de Hochschild HH^i(A,M) de A, com coeficientes no bimódulo M, coincide com Ext^i_{A^e}(A,M). Logo, este pode ser calculado usando uma resolução projetiva da álgebra como A-bimódulo. Diferentes autores como Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell e Andrea Solotar desenvolveram ferramentas para a construção destas resoluções em casos específicos. Um resultado recente e muito importante é apresentado por Andrea Solotar e Sergio Chohuy, onde se mostra a construção de uma resolução projetiva de bimódulos para álgebras associativas generalizando o resultado para álgebras monomiais feito por Bardzell. Nesta dissertação pretendemos introduzir ao leitor no conceito de Cohomologia de Hochschild mostrando a importância da mesma mediante resultados conhecidos para álgebras de dimensão finita. Além disso, apresentamos os conceitos e resultados do trabalho de Chohuy e Solotar mencionado acima. No decorrer deste trabalho complementamos algumas demonstrações dos resultados enunciados com o fim de propiciar uma ferramenta para o melhor entendimento dos tópicos trabalhados aqui. / The Hochschild Cohomology is an invariant attached to associative algebras which may provide us some homological aspects of the algebras and its category of modules. Moreover, it has applications to Algebraic Geometry and Representation Theory, among others areas. For algebras A over a field the Hochschild cohomology group HH^i(A,M) of A with coeficients in a bimodule M coincides with Ext^i_{A^e}(A,M). So it can be computed using a projective resolution of the algebra, as a bimodule over itself. Therefore different authors like Dieter Happel, Claude Cibils, Edward Green, David Anick, Michael Bardzell, Sergio Chohuy and Andrea Solotar developed tools for the construction of these resolutions in particular cases. A recent and very important result was introduced by Andrea Solotar and Sergio Chohuy, where they show a construction of a projective bimodule resolution for associative algebras generalizing the result for monomial algebras made by Bardzell. In this dissertation we intend to introduce the reader in the cohomology Hochschild concept, showing its importance through known results for finite dimensional algebras. Besides, we exhibit the concepts and results of Chohuy and Solotar mentioned before. During this text, we complement some demonstrations with the purpose of giving a tool for the a better understanding.
15

Endomorphism rings of hyperelliptic Jacobians

Kriel, Marelize 03 1900 (has links)
Thesis (MSc (Mathematics))--University of Stellenbosch, 2005. / The aim of this thesis is to study the unital subrings contained in associative algebras arising as the endomorphism algebras of hyperelliptic Jacobians over finite fields. In the first part we study associative algebras with special emphasis on maximal orders. In the second part we introduce the theory of abelian varieties over finite fields and study the ideal structures of their endomorphism rings. Finally we specialize to hyperelliptic Jacobians and study their endomorphism rings.
16

Expoentes de PI-Álgebras associativas. / Exponent of PI-associative algebras.

FRANÇA, Antonio Marcos Duarte. 09 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-09T18:04:07Z No. of bitstreams: 1 ANTONIO MARCOS DUARTE DE FRANÇA - DISSERTAÇÃO 2014..pdf: 1066992 bytes, checksum: 6e270db1611e61d65507f5f99e9bd161 (MD5) / Made available in DSpace on 2018-08-09T18:04:07Z (GMT). No. of bitstreams: 1 ANTONIO MARCOS DUARTE DE FRANÇA - DISSERTAÇÃO 2014..pdf: 1066992 bytes, checksum: 6e270db1611e61d65507f5f99e9bd161 (MD5) Previous issue date: 2014-10 / Capes / Para ler o resumo deste trabalho recomendamos o download do arquivo, uma vez que o mesmo possui fórmulas e caracteres matemáticos que não foram possíveis trascreve-los aqui. / To read the summary of this work we recommend downloading the file, since it has formulas and mathematical characters that were not possible to transcribe them here.
17

Graduações em álgebras matriciais. / Graduações em álgebras matriciais.

GUIMARÃES, Alan de Araújo. 10 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-10T16:27:27Z No. of bitstreams: 1 ALAN DE ARAÚJO GUIMARÃES - DISSERTAÇÃO PPGMAT 2014..pdf: 389630 bytes, checksum: 8fee4901dc2c6f4008991c541e1728b0 (MD5) / Made available in DSpace on 2018-08-10T16:27:27Z (GMT). No. of bitstreams: 1 ALAN DE ARAÚJO GUIMARÃES - DISSERTAÇÃO PPGMAT 2014..pdf: 389630 bytes, checksum: 8fee4901dc2c6f4008991c541e1728b0 (MD5) Previous issue date: 2014-12 / Capes / O tema central da presente dissertação é o estudo das graduações de um grupo G nas álgebras UTn(F) eUT(d1,...,dm).Inicialmente, no Capítulo 2, supondo o grupo G abeliano e infnito e o corpo F algebricamente fechado e de característica zero, provamos que qualquer graduação em UTn(F) é elementar (a menos de automorfismo G-graduado). Ainda no Capítulo 2,sem fazer qualquer suposição sobre o grupo G e ocorpo F, chegamos à mesma conclusão. Para tanto, foi necessário utilizar técnicas mais sutis na demonstração. No Capítulo 3, novamente supondo o grupo G abeliano e infinito e o corpo F algebricamente fechado e de característica zero,classificamos as G-graduações da F-álgebra UT(d1,...,dm). Veremos que,neste caso, existe uma decomposição d1 = tp1,...,dm = tpm talqueUT(d1,...,dm) é isomorfa, como álgebra G-graduada ,ao produto tensorial Mt(F)⊗UT(p1,...,pm), onde Mt(F) tem uma G-graduação na e UT(p1,...,pm) tem uma G-graduação elementar. / The central theme of this dissertation is the study the of the gradings of a group G in the algebras UTn(F) and UT(d1, . . . , dm). Initially, in Chapter 2, assuming G a nite abelian group and F an algebraically closed eld and of characteristic zero, we prove that any grading in UTn(F) is elementary (up to graded isomorphism). Still in Chapter 2, without making any assumption about the group G and the eld F, we obtain the same conclusion. To prove this was necessary to use more subtle techniques in demonstration. In Chapter 3, again assuming G a nite abelian group and F an algebraically closed eld of characteristic zero, we classify the gradings of the algebra UT(d1, . . . , dm). We will see that there is a decomposition d1 = tp1, . . . , dm = tpm such that UT(d1, ..., dm) is isomorphic, as graded algebra, to the tensor product Mt(F) ⊗ UT(p1, . . . , pm), where Mt(F) has a ne grading and UT(p1, . . . , pm) has a elementary grading.
18

Etude et Classification des algèbres Hom-associatives / Study and Classification of Hom-associative algebras

Abdou Damdji, Ahmed Zahari 24 May 2017 (has links)
La thèse comporte six chapitres. Dans le premier chapitre, on rappelle les bases de la théorie et on étudie la structure des algèbres Hom-associatives ainsi que les différentes constructions comme la composition avec des endomorphismes qui nous permet de construire de nouveaux objets et d’établir certaines nouvelles propriétés. Parmi les résultats originaux, on peut signaler l’étude des algèbres Hom-associatives simples ainsi que leurs constructions. On a montré que toutes les algèbres Hom-associatives multiplicatives simples s’obtiennent par composition d’algèbres simples et d’automorphismes. Dans le deuxième chapitre, on commence par étudier les propriétés des changements de base dans ces structures algébriques. On a calculé la base de Gröbner de l’idéal engendrant la variété algébrique des algèbres Hom-associatives de dimension 2 où la multiplication µ et l’application linéaire α sont identifiées à leurs constantes de structure relativement à une base donnée. La classification, à isomorphisme près, des algèbres Hom-associatives unitaires et non unitaires est établie en dimension 2 et 3. On a aussi décrit les algèbres de type associatif en se basant sur le théorème de twist de Yau. Dans le troisième chapitre, on étudie certaines propriétés et invariants comme les dérivations, αk-dérivations où k est un entier positif. Dans le quatrième chapitre, on établit la cohomologie de ces algèbres. On a pu lister les algèbres rigides grâce à leur classe de cohomologie puis on s'est 'intéressé aux déformations infinitésimales et dégénérations. D’une part, la cohomologie et déformation de ces algèbres nous a permis d’identifier les algèbres rigides dont le deuxième groupe de cohomologie est nulle, et d’autre part de caractérisation de composante irréductible. Dans le cinquième chapitre, on s’intéresse aux structures Rota-Baxter de poids λ ϵK de ces algèbres. Enfin, dans le dernier chapitre, on a travaillé sur les structures Hom-bialgèbres et leurs invariants. / The purpose of this thesis is to study the structure of Hom-associative algebras and provide classifications. Among the results obtained in this thesis, we provide 2-dimensional and 3-dimensional Hom-associative algebras and give a characterization of multiplicative simple Hom-associative algebras. Moreover we compute some invariants and discuss irreducible components of the corresponding algebraic varieties. The thesis is organized as follows. In the first chapter we give the basics about Hom-associative algebras and provide some new properties. Moreover, we discuss unital Hom-associative algebras. Chapter 2 deals with simple multiplicative Hom-associative algebras. We present one of the main results of this paper, that is a characterization of simple multiplicative Hom-associative algebras. Indeed, we show that they are all obtained by twistings of simple associative algebras. Chapter 3 is dedicated to describe algebraic varieties of Hom-associative algebras and provide classifications, up to isomorphism, of 2-dimensional and 3-dimensional Hom-associative algebras. In chapter 4, we compute their derivations and twisted derivations, whereas in chapter 5, we compute their Hom-Type Hochschild cohomology. In the last section of this chapter, we consider the geometric classification problem using one-parameter formel deformations, and describe the irreducible components. In chapter 6, we compute Rota-Baxter structures of weight k of Hom-associative algebras appearing in our classification. In chapter 7, We work out Hom-bialgebras structures as well as their invariants. Properties and classifications, as well as the calculation of certain invariants such as the first and second cohomology groups, were studied.
19

N-ary algebras. Arithmetic of intervals

Goze, Nicolas 26 March 2011 (has links) (PDF)
This thesis has two distinguish parts. The first part concerns the study of n-ary algebras. A n-ary algebra is a vector space with a multiplication on n arguments. Classically the multiplications are binary, but the use of ternary multiplication in theoretical physic like for Nambu brackets led mathematicians to investigate these type of algebras. Two classes of n-ary algebras are fundamental: the associative n-ary algebras and the Lie n-ary algebras. We are interested by both classes. Concerning the associative n-ary algebras we are mostly interested in 3-ary partially associative 3-ary algebras, that is, algebras whose multiplication satisfies ((xyz)tu)+(x(yzt)u)+(xy(ztu))=0. This type is interesting because the previous woks on this subject was not distinguish the even and odd cases. We show in this thesis that the case n=3 can not be treated as the even cases. We investigate in detail the free partially associative 3-ary algebra on k generators. This algebra is graded and we compute the dimensions of the 7 first components. In the general case, we give a spanning set such as the sub family of non zero vector is a basis. The main consequences are the free partially associative 3-ary algebra is solvable. In the free commutative partially associative 3-ary algebra any product on 9 elements is trivial. The operad for partially associative 3-ary algebra do not satisfy the Koszul property. Then we study n-ary products on the tensors. The simplest example is given by a internal product of non square matrices. We can define a 3-ary product by taking A . ^tB . C. We show that we have to generalize a bit the definition of partial associativity for n-ary algebras. We then introduce the products -partially associative where  is a permutation of the symmetric group of degree n. Concerning the n-ary algebras, two classes have been defined: Filipov algebras (also called recently Lie-Nambu algebras) and some more general class, the n-Lie algebras. Filipov algebras are very important in the study of the mechanic of Nambu-Poisson, and is a particular case of the other. So to define an approach of Maurer-Cartan type, that is, define a scalar cohomology, we consider in this work Fillipov as n-Lie algebras and develop such a calculus in the n-Lie algebras frame work. We also give some classifications of n-ary nilpotent algebras. The last chapter of this part concerns my work in Master on the Poisson algebras on polynomials. We present link with the Lie algebras is clear. Thus we extend our study to Poisson algebras which associated Lie algebra is rigid and we apply these results to the enveloping algebras of rigid Lie algebras. The second part concerns intervals arithmetic. The interval arithmetic is used in a lot of problems concerning robotic, localization of parameters, and sensibility of inputs. The classical operations of intervals are based of the rule : the result of an operation of interval is the minimal interval containing all the result of this operation on the real elements of the concerned intervals. But these operations imply many problems because the product is not distributive with respect the addition. In particular it is very difficult to translate in the set of intervals an algebraic functions of a real variable. We propose here an original model based on an embedding of the set of intervals on an associative algebra. Working in this algebra, it is easy to see that the problem of non distributivity disappears, and the problem of transferring real function in the set of intervals becomes natural. As application, we study matrices of intervals and we solve the problem of reduction of intervals matrices (diagonalization, eigenvalues, and eigenvectors).
20

Nilálgebras comutativas de potências associativas / Commutative power-associative nilalgebras

Rodiño Montoya, Mary Luz 15 June 2009 (has links)
O objetivo deste trabalho é estudar a estrutura dos módulos sobre uma álgebra trivial de dimensão dois na variedade M das álgebras comutativas de potências associativas. Em particular classificamos os módulos irredutíveis. Estes resultados nos permitem compreender melhor a estrutura das nilálgebras comutativas de dimensão finita e nilíndice 4. Finalmente classificamos, sob isomorfismos, as nilálgebras comutativas de potências associativas de dimensão n e nilíndice n. / The aim of this work is to study the structure of the modules over a trivial algebra of dimension two in the variety M of commutative and power-associative algebras. In particular we classify the irreducible modules. These results enables us to understand better the structure of finite-dimensional power-associative nilalgebras of nilindex 4. Finally, we classify, up to isomorphism, commutative power associative nilalgebras of nilindex n and dimension n.

Page generated in 0.0994 seconds