• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 11
  • 5
  • 1
  • Tagged with
  • 32
  • 32
  • 16
  • 13
  • 11
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Likelihood-based testing and model selection for hazard functions with unknown change-points

Williams, Matthew Richard 03 May 2011 (has links)
The focus of this work is the development of testing procedures for the existence of change-points in parametric hazard models of various types. Hazard functions and the related survival functions are common units of analysis for survival and reliability modeling. We develop a methodology to test for the alternative of a two-piece hazard against a simpler one-piece hazard. The location of the change is unknown and the tests are irregular due to the presence of the change-point only under the alternative hypothesis. Our approach is to consider the profile log-likelihood ratio test statistic as a process with respect to the unknown change-point. We then derive its limiting process and find the supremum distribution of the limiting process to obtain critical values for the test statistic. We first reexamine existing work based on Taylor Series expansions for abrupt changes in exponential data. We generalize these results to include Weibull data with known shape parameter. We then develop new tests for two-piece continuous hazard functions using local asymptotic normality (LAN). Finally we generalize our earlier results for abrupt changes to include covariate information using the LAN techniques. While we focus on the cases of no censoring, simple right censoring, and censoring generated by staggered-entry; our derivations reveal that our framework should apply to much broader censoring scenarios. / Ph. D.
12

Estimating rigid motion in sparse sequential dynamic imaging: with application to nanoscale fluorescence microscopy

Hartmann, Alexander 22 April 2016 (has links)
No description available.
13

Estimation de régularité locale

Servien, Rémi 12 March 2010 (has links) (PDF)
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment au travers d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité et de l'histogramme. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique.
14

Second-order least squares estimation in regression models with application to measurement error problems

Abarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies. / February 2009
15

Second-order least squares estimation in regression models with application to measurement error problems

Abarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies.
16

Second-order least squares estimation in regression models with application to measurement error problems

Abarin, Taraneh 21 January 2009 (has links)
This thesis studies the Second-order Least Squares (SLS) estimation method in regression models with and without measurement error. Applications of the methodology in general quasi-likelihood and variance function models, censored models, and linear and generalized linear models are examined and strong consistency and asymptotic normality are established. To overcome the numerical difficulties of minimizing an objective function that involves multiple integrals, a simulation-based SLS estimator is used and its asymptotic properties are studied. Finite sample performances of the estimators in all of the studied models are investigated through simulation studies.
17

Stochastické diferenciální rovnice s Gaussovským šumem / Stochastic Differential Equations with Gaussian Noise

Janák, Josef January 2018 (has links)
Title: Stochastic Differential Equations with Gaussian Noise Author: Josef Janák Department: Department of Probability and Mathematical Statistics Supervisor: Prof. RNDr. Bohdan Maslowski, DrSc., Department of Probability and Mathematical Statistics Abstract: Stochastic partial differential equations of second order with two un- known parameters are studied. The strongly continuous semigroup (S(t), t ≥ 0) for the hyperbolic system driven by Brownian motion is found as well as the formula for the covariance operator of the invariant measure Q (a,b) ∞ . Based on ergodicity, two suitable families of minimum contrast estimators are introduced and their strong consistency and asymptotic normality are proved. Moreover, another concept of estimation using "observation window" is studied, which leads to more families of strongly consistent estimators. Their properties and special cases are descibed as well as their asymptotic normality. The results are applied to the stochastic wave equation perturbed by Brownian noise and illustrated by several numerical simula- tions. Keywords: Stochastic hyperbolic equation, Ornstein-Uhlenbeck process, invariant measure, paramater estimation, strong consistency, asymptotic normality.
18

Contribution à la régression non paramétrique avec un processus erreur d'autocovariance générale et application en pharmacocinétique / Contribution to nonparametric regression estimation with general autocovariance error process and application to pharmacokinetics

Benelmadani, Djihad 18 September 2019 (has links)
Dans cette thèse, nous considérons le modèle de régression avec plusieurs unités expérimentales, où les erreurs forment un processus d'autocovariance dans un cadre générale, c'est-à-dire, un processus du second ordre (stationnaire ou non stationnaire) avec une autocovariance non différentiable le long de la diagonale. Nous sommes intéressés, entre autres, à l'estimation non paramétrique de la fonction de régression de ce modèle.Premièrement, nous considérons l'estimateur classique proposé par Gasser et Müller. Nous étudions ses performances asymptotiques quand le nombre d'unités expérimentales et le nombre d'observations tendent vers l'infini. Pour un échantillonnage régulier, nous améliorons les vitesses de convergence d'ordre supérieur de son biais et de sa variance. Nous montrons aussi sa normalité asymptotique dans le cas des erreurs corrélées.Deuxièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression, basé sur une propriété de projection. Cet estimateur est construit à travers la fonction d'autocovariance des erreurs et une fonction particulière appartenant à l'Espace de Hilbert à Noyau Autoreproduisant (RKHS) associé à la fonction d'autocovariance. Nous étudions les performances asymptotiques de l'estimateur en utilisant les propriétés de RKHS. Ces propriétés nous permettent d'obtenir la vitesse optimale de convergence de la variance de cet estimateur. Nous prouvons sa normalité asymptotique, et montrons que sa variance est asymptotiquement plus petite que celle de l'estimateur de Gasser et Müller. Nous conduisons une étude de simulation pour confirmer nos résultats théoriques.Troisièmement, nous proposons un nouvel estimateur à noyau pour la fonction de régression. Cet estimateur est construit en utilisant la règle numérique des trapèzes, pour approximer l'estimateur basé sur des données continues. Nous étudions aussi sa performance asymptotique et nous montrons sa normalité asymptotique. En outre, cet estimateur permet d'obtenir le plan d'échantillonnage optimal pour l'estimation de la fonction de régression. Une étude de simulation est conduite afin de tester le comportement de cet estimateur dans un plan d'échantillonnage de taille finie, en terme d'erreur en moyenne quadratique intégrée (IMSE). De plus, nous montrons la réduction dans l'IMSE en utilisant le plan d'échantillonnage optimal au lieu de l'échantillonnage uniforme.Finalement, nous considérons une application de la régression non paramétrique dans le domaine pharmacocinétique. Nous proposons l'utilisation de l'estimateur non paramétrique à noyau pour l'estimation de la fonction de concentration. Nous vérifions son bon comportement par des simulations et une analyse de données réelles. Nous investiguons aussi le problème de l'estimation de l'Aire Sous la Courbe de concentration (AUC), pour lequel nous proposons un nouvel estimateur à noyau, obtenu par l'intégration de l'estimateur à noyau de la fonction de régression. Nous montrons, par une étude de simulation, que le nouvel estimateur est meilleur que l'estimateur classique en terme d'erreur en moyenne quadratique. Le problème crucial de l'obtention d'un plan d'échantillonnage optimale pour l'estimation de l'AUC est discuté en utilisant l'algorithme de recuit simulé généralisé. / In this thesis, we consider the fixed design regression model with repeated measurements, where the errors form a process with general autocovariance function, i.e. a second order process (stationary or nonstationary), with a non-differentiable covariance function along the diagonal. We are interested, among other problems, in the nonparametric estimation of the regression function of this model.We first consider the well-known kernel regression estimator proposed by Gasser and Müller. We study its asymptotic performance when the number of experimental units and the number of observations tend to infinity. For a regular sequence of designs, we improve the higher rates of convergence of the variance and the bias. We also prove the asymptotic normality of this estimator in the case of correlated errors.Second, we propose a new kernel estimator of the regression function based on a projection property. This estimator is constructed through the autocovariance function of the errors, and a specific function belonging to the Reproducing Kernel Hilbert Space (RKHS) associated to the autocovariance function. We study its asymptotic performance using the RKHS properties. These properties allow to obtain the optimal convergence rate of the variance. We also prove its asymptotic normality. We show that this new estimator has a smaller asymptotic variance then the one of Gasser and Müller. A simulation study is conducted to confirm this theoretical result.Third, we propose a new kernel estimator for the regression function. This estimator is constructed through the trapezoidal numerical approximation of the kernel regression estimator based on continuous observations. We study its asymptotic performance, and we prove its asymptotic normality. Moreover, this estimator allow to obtain the asymptotic optimal sampling design for the estimation of the regression function. We run a simulation study to test the performance of the proposed estimator in a finite sample set, where we see its good performance, in terms of Integrated Mean Squared Error (IMSE). In addition, we show the reduction of the IMSE using the optimal sampling design instead of the uniform design in a finite sample set.Finally, we consider an application of the regression function estimation in pharmacokinetics problems. We propose to use the nonparametric kernel methods, for the concentration-time curve estimation, instead of the classical parametric ones. We prove its good performance via simulation study and real data analysis. We also investigate the problem of estimating the Area Under the concentration Curve (AUC), where we introduce a new kernel estimator, obtained by the integration of the regression function estimator. We prove, using a simulation study, that the proposed estimators outperform the classical one in terms of Mean Squared Error. The crucial problem of finding the optimal sampling design for the AUC estimation is investigated using the Generalized Simulating Annealing algorithm.
19

Nonparametric Statistical Inference for Entropy-type Functionals / Icke-parametrisk statistisk inferens för entropirelaterade funktionaler

Källberg, David January 2013 (has links)
In this thesis, we study statistical inference for entropy, divergence, and related functionals of one or two probability distributions. Asymptotic properties of particular nonparametric estimators of such functionals are investigated. We consider estimation from both independent and dependent observations. The thesis consists of an introductory survey of the subject and some related theory and four papers (A-D). In Paper A, we consider a general class of entropy-type functionals which includes, for example, integer order Rényi entropy and certain Bregman divergences. We propose U-statistic estimators of these functionals based on the coincident or epsilon-close vector observations in the corresponding independent and identically distributed samples. We prove some asymptotic properties of the estimators such as consistency and asymptotic normality. Applications of the obtained results related to entropy maximizing distributions, stochastic databases, and image matching are discussed. In Paper B, we provide some important generalizations of the results for continuous distributions in Paper A. The consistency of the estimators is obtained under weaker density assumptions. Moreover, we introduce a class of functionals of quadratic order, including both entropy and divergence, and prove normal limit results for the corresponding estimators which are valid even for densities of low smoothness. The asymptotic properties of a divergence-based two-sample test are also derived. In Paper C, we consider estimation of the quadratic Rényi entropy and some related functionals for the marginal distribution of a stationary m-dependent sequence. We investigate asymptotic properties of the U-statistic estimators for these functionals introduced in Papers A and B when they are based on a sample from such a sequence. We prove consistency, asymptotic normality, and Poisson convergence under mild assumptions for the stationary m-dependent sequence. Applications of the results to time-series databases and entropy-based testing for dependent samples are discussed. In Paper D, we further develop the approach for estimation of quadratic functionals with m-dependent observations introduced in Paper C. We consider quadratic functionals for one or two distributions. The consistency and rate of convergence of the corresponding U-statistic estimators are obtained under weak conditions on the stationary m-dependent sequences. Additionally, we propose estimators based on incomplete U-statistics and show their consistency properties under more general assumptions.
20

Choix optimal du paramètre de lissage dans l'estimation non paramétrique de la fonction de densité pour des processus stationnaires à temps continu / Optimal choice of smoothing parameter in non parametric density estimation for continuous time stationary processes

El Heda, Khadijetou 25 October 2018 (has links)
Les travaux de cette thèse portent sur le choix du paramètre de lissage dans le problème de l'estimation non paramétrique de la fonction de densité associée à des processus stationnaires ergodiques à temps continus. La précision de cette estimation dépend du choix de ce paramètre. La motivation essentielle est de construire une procédure de sélection automatique de la fenêtre et d'établir des propriétés asymptotiques de cette dernière en considérant un cadre de dépendance des données assez général qui puisse être facilement utilisé en pratique. Cette contribution se compose de trois parties. La première partie est consacrée à l'état de l'art relatif à la problématique qui situe bien notre contribution dans la littérature. Dans la deuxième partie, nous construisons une méthode de sélection automatique du paramètre de lissage liée à l'estimation de la densité par la méthode du noyau. Ce choix issu de la méthode de la validation croisée est asymptotiquement optimal. Dans la troisième partie, nous établissons des propriétés asymptotiques, de la fenêtre issue de la méthode de la validation croisée, données par des résultats de convergence presque sûre. / The work this thesis focuses on the choice of the smoothing parameter in the context of non-parametric estimation of the density function for stationary ergodic continuous time processes. The accuracy of the estimation depends greatly on the choice of this parameter. The main goal of this work is to build an automatic window selection procedure and establish asymptotic properties while considering a general dependency framework that can be easily used in practice. The manuscript is divided into three parts. The first part reviews the literature on the subject, set the state of the art and discusses our contribution in within. In the second part, we design an automatical method for selecting the smoothing parameter when the density is estimated by the Kernel method. This choice stemming from the cross-validation method is asymptotically optimal. In the third part, we establish an asymptotic properties pertaining to consistency with rate for the resulting estimate of the window-width.

Page generated in 0.0723 seconds