Spelling suggestions: "subject:"athabasca"" "subject:"athabascan""
21 |
Dike-Driven Hydrothermal Processes on Mars and Sill Emplacement on EuropaCraft, Kathleen Liana 07 November 2013 (has links)
Evidence of hydrothermal and tectonic activity is found throughout our solar system. Here I investigated hydrothermal and fracturing processes on three planetary bodies: Earth, Mars and Europa. For the first project, we set up a dike-driven hydrothermal system and calculated heat and water flow using boundary layer theory. Water flow rates and volumes were then compared to the requirements for surface feature formation. Results found that the water volumes produced were adequate to form Athabasca Valles, except the flow rates were low. Episodic flood releases could enable the higher flow rates if water was first collected in aquifers, possibly stored beneath ice. On the icy moon Europa, I modeled a proposed sill emplacement mechanism using a finite element code and found that water could flow up through an approximately 10 km thick ice shell without freezing. The analysis also found that shallow cracks in the ice combined with deep cracks cause a stress direction change that helps the fracture turn and propagate more horizontally. However, the sill lifetime is less than the time a study by Dombard et al. [2013] calculated to be necessary for the formation of flexure fractures along margins of double ridges. Replenishment processes will be explored in future work to help extend sill lifetime. The last investigation calculated dike induced permeability changes in the crust on Earth and Mars and related the changes to water and heat flow rates and water volumes. Comparisons were made to event plume heat and elevated fluid temperatures observed at mid-ocean ridges. Heat values determined by the models agreed well with the 10^14 to 10^17 J expected. For the Martian model, water flow rates and volumes were compared to formation requirements for the valley system Athabasca Valles. Results found that flow rates would be adequate in the high permeability damage zone adjacent to the dike. However, the lowered permeability outside the damage zone would restrict replenishment flow and could cause the need for water storage and periodic release between flood events as the volume within the damage zone is not adequate for the valley formation. / Ph. D.
|
22 |
A toxicity study on tar sands tailings /Ludwig, Ralph D. January 1983 (has links)
No description available.
|
23 |
A toxicity study on tar sands tailings /Ludwig, Ralph D. January 1983 (has links)
No description available.
|
24 |
Aufbereitung von Athabasca ÖlsandTewes, Elisabeth 11 December 2015 (has links) (PDF)
Gegenstand dieser Arbeit ist die Entwicklung und Untersuchung eines Aufbereitungsprozesses zur Gewinnung von Bitumen aus kanadischem Athabasca Ölsand, der im Tagebau gewonnen wurde. Es wird ein mechanisch-thermisches Verfahren zur Fest-Flüssig-Trennung eingesetzt. Dabei handelt es sich um vier Schritte: (1) Suspendierung des Ölsandes mit den organischen Lösungsmitteln, Toluol und n-Heptan, (2) Filterkuchenbildung, (3) Waschung des Filterkuchens mit Wechsel der Waschflüssigkeiten (gradierte Waschung) und (4) Dampfbeaufschlagung. Der Prozess stellt eine Alternative zur herkömmlichen Heißwasser-extraktion des Ölsandes dar. Die Nachteile der Heißwasserextraktion sind ökologische Probleme, ein hoher Energie- und Frischwasserbedarf. Die Ziele des Alternativprozesses sind die Minimierung des Wasser- und Energiebedarfs, Vermeidung schädlicher Abfallstoffe sowie die Maximierung der Bitumenausbeute. Als Produkte sollen feststofffreies Bitumen und rückstandsfreier, deponierbarer Feststoff gewonnen werden.
|
25 |
Lakes of the Peace-Athabasca Delta: Controls on nutrients, chemistry, phytoplankton, epiphyton and deposition of polycyclic aromatic compounds (PACs)Wiklund, Johan Andre January 2012 (has links)
Floodplain lakes are strongly regulated by river connectivity because floodwaters exert strong influence on the water balance, the physical, chemical and biological limnological conditions, and the influx of contaminants. The Peace-Athabasca Delta (PAD) in northern Alberta (Canada) is a hydrologically complex landscape and is an important node in the upper Mackenzie River Drainage Basin. The ecological integrity of the PAD is potentially threatened by multiple environmental stressors, yet our understanding of the hydroecology of this large floodplain remains underdeveloped. Indeed, ever since the planning and construction of the WAC Bennett Dam (1960s), concerns have grown over the effects of upstream human activities on the lakes of the PAD. More recently, concerns over the health of the PAD have intensified and come to the fore of national and international dialogue due to water abstraction and mining and processing activities by the rapidly expanding oil sands industry centred in Fort McMurray Alberta. Currently, widespread perception is that upstream human activities have reduced water levels and frequency of flooding at the PAD, which have lowered nutrient availability and productivity of perched basin lakes, and have increased supply of pollutants from oil sands. However, these perceptions remain based on insufficient knowledge of pre-impact conditions and natural variability. Current and past relations between hydrology and limnology of PAD lakes are mostly undocumented, particularly during the important spring freshet period when the effects of river flood waters are strongest. Similarly, knowledge of the deposition of oil-sands- related contaminants in the PAD remains insufficient to determine whether anthropogenic activities have increased the deposition of important oil-sands-related contaminants such as polycyclic aromatic compounds (PACs) relative to natural processes. Such knowledge gaps must be filled to achieve effective monitoring, policy and governance concerning impacts of industrial development and the protection of human and environmental health within the PAD and Mackenzie drainage basin. This thesis examines the effects of river flooding (and the lack of) on water clarity, nutrients, chemistry, phytoplankton abundance, epiphyton community composition and the deposition of polycyclic aromatic compounds (PACs) in lakes of the Peace-Athabasca Delta.
To determine the role of flooding on contemporary epiphytic diatom communities (an abundant and diverse guild of primary producers in PAD lakes), a field experiment was conducted examining the community composition and abundance of epiphytic diatoms in four PAD lakes. Two of these four lakes had received floodwaters that spring and two had not. Epiphytic diatom communities in each lake were sampled during the peak macrophyte biomass period (summer) from two macrophyte taxa (Potamogeton zosteriformis, P. perfoliatus var. richardsonii) and from polypropylene artificial substrates previously deployed that spring. A two-way analysis of similarity (ANOSIM) test identified that epiphytic diatom community composition differed between lakes that flooded and those that did not flood. From the use of similarity percentage (SIMPER) analysis, diatom taxa were identified that discriminate between flooded and non-flooded lakes. The relative abundance of ‘strong flood indicator taxa’ was used to construct an event-scale flood record spanning the past ~180 years using analyses of sedimentary diatom assemblages from a closed-drainage lake (PAD 5). Results were verified by close agreement with an independent paleo-flood record from a nearby flood-prone oxbow lake (PAD 54) and historical records. Comparison of epiphytic diatoms in flooded and non-flooded lakes in this study provides a promising approach to detect changes in flood frequency, and may have applications for reconstructing other pulse-type disturbances such as hurricanes and pollutant spills. Additionally, this study demonstrates that artificial substrates can provide an effective bio-monitoring tool for lakes of the PAD and elsewhere.
To improve our understanding of the hydrolimnological responses of lake in the PAD to flooding, repeated measurements over three years (2003-05) were made on a series of lakes along a hydrological gradient. This allowed the role of river flooding to be characterized on limnological conditions of lakes and to identify the patterns and timescales of limnological change after flooding. River floodwaters elevate lake water concentrations of suspended sediment, total phosphorus (TP), SO4 and dissolved Si (DSi), and reduce concentrations of total Kjeldahl nitrogen (TKN), DOC and most ions. River flooding increases limnological homogeneity among lakes, because post-flood conditions are strongly affected by the river water properties. After floodwaters recede, limnological conditions become more heterogeneous among lakes in response to diversity of local basin influences (geology, slope, vegetation, depth, fetch, and biological communities and processes), and limnological changes occur at two distinct timescales. In the weeks to months after flooding, water clarity increases as suspended sediments and TP settle out of the water column. In the absence of flooding for many years to decades, evaporative concentration leads to an increase in most nutrients (TKN, inorganic N, and dissolved P), DOC and ions. Contrary to a prevailing paradigm, these results suggest that regular flooding is not required to maintain high nutrient concentrations. In light of anticipated declines in river discharge, limnological conditions in the southern Athabasca sector will become increasingly less dominated by the short-term effects of flooding, and resemble nutrient- and solute-rich lakes in the northern Peace sector that are infrequently flooded.
To determine the roles of the Athabasca River and atmospheric transport as vectors for the deposition of PACs in the PAD, sediment cores spanning the last ~200 years were collected from three lakes within the delta. A closed-drainage basin elevated well above the floodplain (PAD 18) was selected to determine temporal patterns of change in PAC concentration due to atmospheric deposition and within-basin production of PACs. Known patterns of paleohydrological changes at the other two lakes (PAD 23 and 31) were used to assess the role of the Athabasca River in delivering PACs to the Athabasca Delta during the ~200 year. Well- dated sediment core samples were analysed for 52 alkylated and non-alkylated PACs (method EPA 3540/8270-GC/MS). Sediments deposited in the non-flood prone lake (PAD 18) contained lower concentrations of total PACs compared to sediments deposited during flood-prone periods in the other study lakes, and were dominated by PACs of a pyrogenic rather than bitumen origin. Multivariate analysis of similarity tests identified that the composition of PACs differs between sediments deposited during not flood-prone and flood-prone periods. Subsequent Similarities Percentage (SIMPER) analysis was used and identified seven PACs that are preferentially deposited during flood-prone periods. These seven PACs are bitumen-associated, river-transported and account for 51% of the total PACs found in oil-sands sediment. At PAD 31, which has been flood-prone both before and since onset of Athabasca oil sands development, identified no measureable differences in both the proportion and concentration of the river-transported indicator PACs in sediments deposited pre-1940s versus post-1982. Our findings suggest that natural erosion of exposed bitumen along the banks of the Athabasca River and its tributaries is the main process delivering PACs to the Athabasca Delta, and that the spring freshet is a key period for contaminant mobilization and transport. Such key baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring and surveillance programs for the lower Athabasca River watershed in the face of future oil sands development. Further monitoring activities and additional paleolimnological studies of the depositional history of PACs and other oil-sands- and non-oil-sands-related contaminants is strongly recommended.
Overall, results of this research identify that river flooding exerts strong control on physical, chemical and biological conditions of lakes within the PAD. However, contrary to prevailing paradigms, the PAD is not a landscape that has been adversely and permanently affected by regulation of the Peace River and industrial development of the oil sands along the Athabasca River. Instead, data from contemporary and paleolimnological studies identify that natural processes continue to dominate the delivery of water and contaminants to the delta. Regular and frequent flooding is not essential to maintain the supply of nutrients and productivity of delta lakes, which has been a widespread paradigm that developed in the absence of objective scientific data. Instead, nutrient concentrations rise over years to decades after flooding and lake productivity increases. During the thesis research, novel approaches were developed and demonstrated to be effective. Namely, new artificial substrate samplers were designed for aquatic biomonitoring that accrue periphyton and can identify the occurrence of flood events. Also, paleolimnological methods were employed to characterize the composition and concentration of PACs supplied by natural processes prior to oil sands industrial activity, which serves as an important benchmark for assessing industrial impacts. These are effective methods that can be employed to improve monitoring programs and scientific understanding of the factors affecting this world-renowned landscape, as well as floodplains elsewhere.
|
26 |
Ecological Response of Atmospheric Nitrogen Deposition on Reconstructed Soils in the Athabasca Oil Sands RegionHemsley, Tyrel, Lee Unknown Date
No description available.
|
27 |
Caractéristiques, chronologie et rôles des circulations fluides dans le bassin d'Athabasca et son socle : implications dans la formation et l'évolution du gisement d'uranium de Cigar Lake / Characteristics, chronology and roles of fluid circulations in the Athabasca Basin and its basement : implications for the formation and evolution of the Cigar Lake uranium depositMartz, Pierre 13 December 2017 (has links)
Les principales cibles d'exploration pour les gisements d’uranium de type discordance du bassin d’Athabasca (Canada) sont les structures graphiteuses du socle. Toutes ces structures ne sont pourtant pas fertiles et elles présentent des histoires plus ou moins complexes de circulations fluides successives. Cette thèse propose de déconvoluer les caractéristiques propres à chaque évènement de circulations fluides par une étude multidisciplinaire focalisée sur l’exemple de l’environnement proche du gisement de Cigar Lake. Au cours de l’exhumation tardi-orogénique du socle, la formation de failles ductile-cassantes associées à une circulation intense de fluides à C-O-H-N a permis des enrichissements en graphite et une première évolution pétrophysique des zones endommagées. Ces structures du socle particulièrement fragilisées par la déformation cassante fini-Hudsonienne ont pu être réactivées après dépôt du bassin et devenir des lieux favorables à la convection de saumures sédimentaires. La circulation de saumures sodiques dans le socle a favorisé des interactions fluides-roches à l’origine de la solubilisation de l’uranium, d’altérations K-Mg et d’évolution de composition du fluide vers un pôle plus calcique de plus forte salinité. Enfin une méthodologie d’analyse intégrée des compositions élémentaires majeures, traces et isotopiques U-Pb-O sur oxydes d’uranium est proposée, permettant de déconvoluer les effets des évènements fluides ultérieurs sur la minéralisation primaire. Cinq évènements ont ainsi contribué aux caractéristiques actuelles du gisement de Cigar Lake : Un évènement primaire de circulation de saumures à 1290-1380 Ma, à l’origine de l’ensemble du stock d’uranium ; un événement de circulations fluides à ca. 900 Ma à l’échelle régionale qui n’est pas associé à une reprécipitation d’uranium mais a brechifié et perturbé la chimie des oxydes primaires ; deux évènements tardifs de circulations fluides à ca. 340 et 220 Ma qui ont significativement remobilisé le stock primaire d’uranium. Enfin un dernier épisode récent de circulation d’eaux météoriques est à nouveau à l’origine d’un changement de chimie des oxydes antérieurs et d’une remise à zéro des systèmes isotopiques / The main exploration targets for unconformity-related U deposits of the Athabasca Basin are the graphite-rich structures in the basement. But these are not necessarily fertile. They show distinct features expressing specific events of fluid circulations. This study aims, through a multidisciplinary approach, at unravelling the complex history of fluid flow events recorded in the vicinity of the Cigar Lake deposit. During the basement uplift, at the end of the Trans-Hudson Orogeny, the formation of ductile-brittle shear zones associated to the circulation of C-O-H-N fluids led to hydrothermal graphite enrichments and a petrophysical evolution of damages zones. These graphite-rich shear zones that were specifically weakened by the ante-Athabasca brittle reactivation have been reactivated once more after basin deposition allowing the formation of a developed damage zone especially favorable for sedimentary brine convection. Circulations of NaCl-rich brines in the basement led to brine-rock interactions, and subsequent uptake of uranium and other metals from the basement rocks. The latter have subsequently undergone strong K-Mg alteration whereas the NaCl dominated brines evolved toward a CaCl2-dominated composition with higher salinities. Finally, this thesis sets out an integrated methodology allowing to decipher the complex superimposed geochemical signatures of distinct fluid flow events on the primary uranium oxides. Five fluid flow events contributed to the present day state of the Cigar Lake deposit: a primary event of brine circulation occurred at 1290-1380 Ma and is at the origin of the main U stock; a second basin-scale event of fluid flow occurred at ca. 900 Ma, it brecciated and strongly disturbed the deposit; two later events of fluid flow strongly remobilized the deposit at ca. 340 and 220 Ma and greatly contributed to the actual state of the deposit. Finally a last, rather recent event of fluid flow was at the origin of strong chemical changes in the uranium oxides compositions and strong isotopic resetting
|
28 |
An Assessment of Hydro-ecological Changes at Two Closed-drainage Basins in the Peace-Athabasca Delta, Alberta, CanadaSinnatamby, Ramila January 2006 (has links)
Diatom analyses were carried out on sediment cores collected from two low-lying, closed-drainage basins (PAD 9 - 58??46. 46?N, 111??19. 48?W; PAD 12 - 58??57. 29?, 111??19. 74?) in the Peace sector of the Peace-Athabasca Delta (PAD), Alberta, Canada, to provide >1000 year long records of hydro-ecological change. Results from diatom analyses were compared with macrofossil and stable isotope records from the same cores and assessed within the framework of an Athabasca River headwater climate record inferred from isotope dendroclimate data. Results from PAD 9 and PAD 12 sediment cores indicated closed-drainage conditions during the Medieval Warm Period (MWP) and the post-Little Ice Age and high water conditions during the Little Ice Age (LIA). High water levels at PAD 9 and PAD 12 reflected high water conditions on Lake Athabasca and the Rivi??re des Rochers or possibly the Peace River during the LIA (~AD 1600-1900). High water conditions were also observed at low-lying sites in the central and southern regions of the PAD (PAD 31 and PAD 37), and corresponded with evidence of high streamflows on the North Saskatchewan River. In contrast, desiccation evident at PAD 5, a site largely isolated from river influence, reflected atmospherically dry conditions during the LIA. Consistent with changes observed at PAD 5, sediment records at PAD 15, an oxbow lake off the Revillion Coup??, demonstrated low flood frequency during the early to mid-1700s. Increased water levels evident at low-lying sites located in proximity to the central open-drainage network of lakes and rivers were likely due to higher flows on the Athabasca River and potentially on the Peace River. High flows on rivers of the PAD may be attributed to snowmelt-dominated runoff during the LIA relative to the rainfall-dominated runoff during MWP (prior to ~AD 1600) and the post-LIA period (~AD 1900 to present).
|
29 |
Petrogenic Hydrocarbons in the Peace-Athabasca Delta and their Potential for Microbial DegradationRoy, Michelle-Claire 25 January 2019 (has links)
Microbial biodegradation is the primary mechanism by which petrogenic hydrocarbons (PHCs) are removed from the environment. Though hydrocarbon biodegradation is widely studied in marine systems, knowledge of how it occurs in freshwater systems is still lacking. The Peace-Athabasca Delta (PAD), located in northeastern Alberta, is an ideal location to study microbial hydrocarbon degradation since it has a long history of exposure to PHCs. What’s more, these PHCs are predominately sourced from bituminous deposits and are therefore relevant to the Canadian Oil Sands Industry. This thesis investigated the genetic potential for hydrocarbon degradation of PHCs via metagenomic reconstruction of microbial communities in lakes of the Peace and Athabasca Deltas, as well as reference lakes in the nearby boreal uplands. In order to properly evaluate the microbial community and its potential for hydrocarbon degradation, a comprehensive analysis of PHCs (including n-alkanes, polycyclic aromatic compounds (PACs), and petroleum biomarkers of terpanes, hopanes, and steranes) was performed. PHC analysis showed that n-alkanes in lake sediments from all three regions were highly similar and predominately biogenic, while PAC composition was significantly different in each region. Restricted-drainage lakes of the Athabasca Delta had the highest concentrations of PACs from petrogenic sources. Closed-drainage lakes in the Peace Delta had lower concentrations of PACs that likely originated from a mixture of pyrogenic and petrogenic sources. Closed-drainage lakes in the boreal upland region had the lowest concentrations of PACs likely sourced from pyrogenic wood combustion with traces of petrogenic PACs, possibly from atmospheric deposition of dust. Petroleum biomarkers of terpanes, hopanes, and steranes were successfully used to identify the long-range fluvial, and possibly atmospheric, transport of bituminous compounds more than one hundred kilometers from their potential source. This validates the future use of these biomarkers in environmental forensics. Microbial communities in all three regions under study were highly diverse, and their composition was significantly different in both sediment and water. Targeted gene analysis identified a total of 3885 genes involved in the degradation of n-alkanes and PACs in sediment and water. The results show that organic carbon, nitrogen, and sulfur content, as well as PAC and short-chain alkane concentrations were important chemical predictors of change in degradation gene composition. Furthermore, genes for anaerobic degradation of PHCs were identified in syntrophic bacteria, methanogens, nitrate and sulfate reducers, demonstrating the potential for syntrophic hydrocarbon degradation in PAD lakes. Though this thesis confirms the genetic potential for hydrocarbon degradation in PAD and boreal upland lakes, further research is necessary to determine whether these microbial communities can actively degrade the PHCs present in these lakes.
|
30 |
Advancing cumulative effects assessment methodology for river systemsSeitz, Nicole Elyse 14 April 2011
Increased land use intensity has adversely affected aquatic ecosystems within Canada. Activities that occur over the landscape are individually minor but collectively significant when added to other past, present, and reasonably foreseeable future actions, and are defined as cumulative effects. Existing approaches to cumulative effects assessment for river systems within Canada are ineffective. This thesis aims to improve the practice of cumulative effects assessment by evaluating current methodology for linking landscape change and river response over a large spatiotemporal scale. As part of this goal, I offer a framework for better incorporating science into current practices for cumulative effects assessment. The framework addresses the challenges involved in cumulative effects assessment, such as defining appropriate spatial and temporal scale, complex ecological and hydrologic pathways, predictive analysis, and monitoring. I then test the framework over a large spatiotemporal scale using a case study of the lower reaches of the Athabasca River Basin, Alberta. Three objectives are addressed: 1) changes in land use and land cover in the lower ARB for several census dates (1981, 1986, 1991, 1996, 2001) between 1976 (historic) and 2006 (current day) are identified; 2) linkages between landscape change and river water quality and quantity response are evaluated; and 3) results of the different methods used to link landscape stressors with stream responses are compared. Results show that the landscape has changed dramatically between 1976 and 2006, documented by increases in forest harvesting, oil sands developments, and agricultural intensity. Secondly, results suggest that linear regression tests combined with regression trees are useful for capturing the strongest associations between landscape stressors and river response variables. For instance, water abstraction and agricultural activities have a significant impact on solute concentrations. This suggests that water abstraction and agriculture are important indicators to consider when conducting a watershed cumulative effect assessment on a similar spatiotemporal scale. The thesis has strong implications for the need for improved water quality and quantity monitoring of Canada‟s rivers. The research provides a means of identifying appropriate tools for improved watershed cumulative effects assessment for scientists and land managers involved in the environmental impact assessment process and protection of Canada‟s watersheds.
|
Page generated in 0.0264 seconds